Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
import torch
|
4 |
import spacy
|
5 |
import subprocess
|
@@ -11,7 +11,7 @@ from gensim import downloader as api
|
|
11 |
nltk.download('wordnet')
|
12 |
nltk.download('omw-1.4')
|
13 |
|
14 |
-
# Ensure the
|
15 |
try:
|
16 |
nlp = spacy.load("en_core_web_sm")
|
17 |
except OSError:
|
@@ -24,18 +24,21 @@ word_vectors = api.load("glove-wiki-gigaword-50")
|
|
24 |
# Check for GPU and set the device accordingly
|
25 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
26 |
|
27 |
-
# Load
|
28 |
-
tokenizer_ai = AutoTokenizer.from_pretrained("
|
29 |
-
model_ai =
|
30 |
|
31 |
-
# AI detection function using GPT-
|
32 |
def detect_ai_generated(text):
|
33 |
inputs = tokenizer_ai(text, return_tensors="pt", truncation=True, max_length=512).to(device)
|
34 |
with torch.no_grad():
|
35 |
outputs = model_ai(**inputs)
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
39 |
|
40 |
# Function to get synonyms using NLTK WordNet
|
41 |
def get_synonyms_nltk(word, pos):
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
|
3 |
import torch
|
4 |
import spacy
|
5 |
import subprocess
|
|
|
11 |
nltk.download('wordnet')
|
12 |
nltk.download('omw-1.4')
|
13 |
|
14 |
+
# Ensure the SpaCy model is installed
|
15 |
try:
|
16 |
nlp = spacy.load("en_core_web_sm")
|
17 |
except OSError:
|
|
|
24 |
# Check for GPU and set the device accordingly
|
25 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
26 |
|
27 |
+
# Load GPT-3.5-turbo model and tokenizer from Hugging Face
|
28 |
+
tokenizer_ai = AutoTokenizer.from_pretrained("Xenova/gpt-3.5-turbo")
|
29 |
+
model_ai = AutoModel.from_pretrained("Xenova/gpt-3.5-turbo").to(device)
|
30 |
|
31 |
+
# AI detection function using GPT-3.5-turbo-based model
|
32 |
def detect_ai_generated(text):
|
33 |
inputs = tokenizer_ai(text, return_tensors="pt", truncation=True, max_length=512).to(device)
|
34 |
with torch.no_grad():
|
35 |
outputs = model_ai(**inputs)
|
36 |
+
# Since this model does not directly output classification logits, you'll need to process the hidden states
|
37 |
+
# For simplicity, let's just use the first hidden state for now (you may need to adjust based on your use case)
|
38 |
+
hidden_state = outputs.last_hidden_state[:, 0, :] # Use the first token's representation
|
39 |
+
# Example: calculate some kind of score based on the hidden state
|
40 |
+
score = torch.mean(hidden_state).item()
|
41 |
+
return f"AI-Generated Content Score: {score:.2f}"
|
42 |
|
43 |
# Function to get synonyms using NLTK WordNet
|
44 |
def get_synonyms_nltk(word, pos):
|