Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,8 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
3 |
-
from transformers import pipeline
|
4 |
import spacy
|
5 |
import subprocess
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet
|
8 |
-
from gensim import downloader as api
|
9 |
|
10 |
# Ensure necessary NLTK data is downloaded
|
11 |
nltk.download('wordnet')
|
@@ -18,24 +15,6 @@ except OSError:
|
|
18 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
19 |
nlp = spacy.load("en_core_web_sm")
|
20 |
|
21 |
-
# Load a smaller Word2Vec model from Gensim's pre-trained models
|
22 |
-
word_vectors = api.load("glove-wiki-gigaword-50")
|
23 |
-
|
24 |
-
# Load the English AI detection pipeline using the Hello-SimpleAI model
|
25 |
-
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
26 |
-
|
27 |
-
# AI detection function using the Hello-SimpleAI/chatgpt-detector-roberta model
|
28 |
-
def detect_ai_generated(text):
|
29 |
-
res = pipeline_en(text)[0]
|
30 |
-
label = res['label'] # "LABEL_0" or "LABEL_1"
|
31 |
-
score = res['score'] * 100 # Convert probability to percentage
|
32 |
-
|
33 |
-
# Map the model's label to human-readable label
|
34 |
-
human_readable_label = "AI" if label == "LABEL_1" else "Human"
|
35 |
-
|
36 |
-
# Return formatted string with label and percentage score
|
37 |
-
return f"The content is {score:.2f}% {human_readable_label} Written", score
|
38 |
-
|
39 |
# Function to get synonyms using NLTK WordNet
|
40 |
def get_synonyms_nltk(word, pos):
|
41 |
synsets = wordnet.synsets(word, pos=pos)
|
@@ -105,19 +84,16 @@ def paraphrase_and_correct(text):
|
|
105 |
|
106 |
return final_text
|
107 |
|
108 |
-
# Gradio interface
|
109 |
-
with gr.Blocks() as
|
110 |
with gr.Row():
|
111 |
with gr.Column():
|
112 |
text_input = gr.Textbox(lines=5, label="Input Text")
|
113 |
-
detect_button = gr.Button("AI Detection")
|
114 |
paraphrase_button = gr.Button("Paraphrase & Correct")
|
115 |
with gr.Column():
|
116 |
-
|
117 |
-
output_prob = gr.Textbox(label="Probability (%)")
|
118 |
|
119 |
-
|
120 |
-
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_label)
|
121 |
|
122 |
-
# Launch the Gradio app
|
123 |
-
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import spacy
|
3 |
import subprocess
|
4 |
import nltk
|
5 |
from nltk.corpus import wordnet
|
|
|
6 |
|
7 |
# Ensure necessary NLTK data is downloaded
|
8 |
nltk.download('wordnet')
|
|
|
15 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
16 |
nlp = spacy.load("en_core_web_sm")
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
# Function to get synonyms using NLTK WordNet
|
19 |
def get_synonyms_nltk(word, pos):
|
20 |
synsets = wordnet.synsets(word, pos=pos)
|
|
|
84 |
|
85 |
return final_text
|
86 |
|
87 |
+
# Gradio interface for paraphrasing and text correction
|
88 |
+
with gr.Blocks() as paraphrase_interface:
|
89 |
with gr.Row():
|
90 |
with gr.Column():
|
91 |
text_input = gr.Textbox(lines=5, label="Input Text")
|
|
|
92 |
paraphrase_button = gr.Button("Paraphrase & Correct")
|
93 |
with gr.Column():
|
94 |
+
output_text = gr.Textbox(label="Paraphrased Text")
|
|
|
95 |
|
96 |
+
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
|
|
|
97 |
|
98 |
+
# Launch the Gradio app for paraphrasing and text correction
|
99 |
+
paraphrase_interface.launch(debug=False)
|