Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,16 +5,10 @@ import spacy
|
|
5 |
import subprocess
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet
|
8 |
-
from pattern.en import conjugate, tenses
|
9 |
|
10 |
# Initialize the English text classification pipeline for AI detection
|
11 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
12 |
|
13 |
-
# Function to predict the label and score for English text (AI Detection)
|
14 |
-
def predict_en(text):
|
15 |
-
res = pipeline_en(text)[0]
|
16 |
-
return res['label'], res['score']
|
17 |
-
|
18 |
# Ensure necessary NLTK data is downloaded for Humanifier
|
19 |
nltk.download('wordnet')
|
20 |
nltk.download('omw-1.4')
|
@@ -52,59 +46,54 @@ def capitalize_sentences_and_nouns(text):
|
|
52 |
|
53 |
return ' '.join(corrected_text)
|
54 |
|
55 |
-
# Function to
|
56 |
-
def
|
57 |
-
# Replace misplaced 'because' and 'but'
|
58 |
-
text = text.replace("because, ", "because ")
|
59 |
-
text = text.replace("but, ", "but ")
|
60 |
-
return text
|
61 |
-
|
62 |
-
# Function to check and correct tense consistency in sentences using Pattern.en
|
63 |
-
def check_tense_consistency(text):
|
64 |
doc = nlp(text)
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
for verb in verbs:
|
73 |
-
verb_tense = tenses(verb.text)
|
74 |
-
if verb_tense:
|
75 |
-
common_tense = verb_tense[0][0]
|
76 |
-
break
|
77 |
-
|
78 |
-
# Conjugate all verbs to the common tense if there's inconsistency
|
79 |
-
corrected_sentence = []
|
80 |
-
for token in sent:
|
81 |
-
if token.pos_ == 'VERB' and common_tense:
|
82 |
-
corrected_verb = conjugate(token.text, tense=common_tense)
|
83 |
-
corrected_sentence.append(corrected_verb)
|
84 |
-
else:
|
85 |
-
corrected_sentence.append(token.text)
|
86 |
-
corrected_sentences.append(' '.join(corrected_sentence))
|
87 |
else:
|
88 |
-
|
89 |
-
|
90 |
-
return ' '.join(corrected_sentences)
|
91 |
|
92 |
-
# Function to
|
93 |
-
def
|
94 |
doc = nlp(text)
|
95 |
corrected_text = []
|
96 |
-
|
97 |
for token in doc:
|
98 |
-
if token.
|
99 |
-
if token.
|
100 |
-
corrected_text.append(
|
101 |
-
|
102 |
-
corrected_text.append(
|
|
|
|
|
|
|
103 |
else:
|
104 |
corrected_text.append(token.text)
|
105 |
else:
|
106 |
corrected_text.append(token.text)
|
|
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
return ' '.join(corrected_text)
|
109 |
|
110 |
# Paraphrasing function using SpaCy and NLTK (Humanifier)
|
@@ -140,22 +129,18 @@ def paraphrase_with_spacy_nltk(text):
|
|
140 |
|
141 |
return corrected_text
|
142 |
|
143 |
-
# Combined function: Paraphrase ->
|
144 |
def paraphrase_and_correct(text):
|
145 |
# Step 1: Paraphrase the text
|
146 |
paraphrased_text = paraphrase_with_spacy_nltk(text)
|
147 |
|
148 |
-
# Step 2:
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
corrected_articles = check_article_usage(corrected_conjunctions)
|
153 |
-
|
154 |
-
# Step 4: Capitalize sentences and proper nouns
|
155 |
-
capitalized_text = capitalize_sentences_and_nouns(corrected_articles)
|
156 |
|
157 |
-
# Step
|
158 |
-
final_text =
|
159 |
|
160 |
return final_text
|
161 |
|
@@ -175,7 +160,7 @@ with gr.Blocks() as demo:
|
|
175 |
paraphrase_button = gr.Button("Paraphrase & Correct")
|
176 |
output_text = gr.Textbox(label="Paraphrased Text")
|
177 |
|
178 |
-
# Connect the paraphrasing
|
179 |
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
|
180 |
|
181 |
# Launch the app with the remaining functionalities
|
|
|
5 |
import subprocess
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet
|
|
|
8 |
|
9 |
# Initialize the English text classification pipeline for AI detection
|
10 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
11 |
|
|
|
|
|
|
|
|
|
|
|
12 |
# Ensure necessary NLTK data is downloaded for Humanifier
|
13 |
nltk.download('wordnet')
|
14 |
nltk.download('omw-1.4')
|
|
|
46 |
|
47 |
return ' '.join(corrected_text)
|
48 |
|
49 |
+
# Function to correct tense errors in a sentence (Tense Correction)
|
50 |
+
def correct_tense_errors(text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
doc = nlp(text)
|
52 |
+
corrected_text = []
|
53 |
+
for token in doc:
|
54 |
+
# Check for tense correction based on modal verbs
|
55 |
+
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
|
56 |
+
# Replace with appropriate verb form
|
57 |
+
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
|
58 |
+
corrected_text.append(lemma)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
else:
|
60 |
+
corrected_text.append(token.text)
|
61 |
+
return ' '.join(corrected_text)
|
|
|
62 |
|
63 |
+
# Function to correct singular/plural errors (Singular/Plural Correction)
|
64 |
+
def correct_singular_plural_errors(text):
|
65 |
doc = nlp(text)
|
66 |
corrected_text = []
|
|
|
67 |
for token in doc:
|
68 |
+
if token.pos_ == "NOUN" and token.tag_ == "NN":
|
69 |
+
if token.dep_ == "nsubj" and any(t.dep_ == "nummod" for t in token.head.children):
|
70 |
+
corrected_text.append(token.text + "s")
|
71 |
+
else:
|
72 |
+
corrected_text.append(token.text)
|
73 |
+
elif token.pos_ == "NOUN" and token.tag_ == "NNS":
|
74 |
+
if token.dep_ == "nsubj" and not any(t.dep_ == "nummod" for t in token.head.children):
|
75 |
+
corrected_text.append(token.lemma_)
|
76 |
else:
|
77 |
corrected_text.append(token.text)
|
78 |
else:
|
79 |
corrected_text.append(token.text)
|
80 |
+
return ' '.join(corrected_text)
|
81 |
|
82 |
+
# Function to check and correct article errors
|
83 |
+
def correct_article_errors(text):
|
84 |
+
doc = nlp(text)
|
85 |
+
corrected_text = []
|
86 |
+
for token in doc:
|
87 |
+
if token.text in ['a', 'an']:
|
88 |
+
next_token = token.nbor(1)
|
89 |
+
if token.text == "a" and next_token.text[0].lower() in "aeiou":
|
90 |
+
corrected_text.append("an")
|
91 |
+
elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
|
92 |
+
corrected_text.append("a")
|
93 |
+
else:
|
94 |
+
corrected_text.append(token.text)
|
95 |
+
else:
|
96 |
+
corrected_text.append(token.text)
|
97 |
return ' '.join(corrected_text)
|
98 |
|
99 |
# Paraphrasing function using SpaCy and NLTK (Humanifier)
|
|
|
129 |
|
130 |
return corrected_text
|
131 |
|
132 |
+
# Combined function: Paraphrase -> Capitalization -> Grammar Correction (Humanifier)
|
133 |
def paraphrase_and_correct(text):
|
134 |
# Step 1: Paraphrase the text
|
135 |
paraphrased_text = paraphrase_with_spacy_nltk(text)
|
136 |
|
137 |
+
# Step 2: Apply grammatical corrections
|
138 |
+
corrected_text = correct_article_errors(paraphrased_text)
|
139 |
+
corrected_text = correct_tense_errors(corrected_text)
|
140 |
+
corrected_text = correct_singular_plural_errors(corrected_text)
|
|
|
|
|
|
|
|
|
141 |
|
142 |
+
# Step 3: Capitalize sentences and proper nouns
|
143 |
+
final_text = capitalize_sentences_and_nouns(corrected_text)
|
144 |
|
145 |
return final_text
|
146 |
|
|
|
160 |
paraphrase_button = gr.Button("Paraphrase & Correct")
|
161 |
output_text = gr.Textbox(label="Paraphrased Text")
|
162 |
|
163 |
+
# Connect the paraphrasing function to the button
|
164 |
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
|
165 |
|
166 |
# Launch the app with the remaining functionalities
|