Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,16 +5,10 @@ import spacy
|
|
| 5 |
import subprocess
|
| 6 |
import nltk
|
| 7 |
from nltk.corpus import wordnet
|
| 8 |
-
from pattern.en import conjugate, tenses
|
| 9 |
|
| 10 |
# Initialize the English text classification pipeline for AI detection
|
| 11 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
| 12 |
|
| 13 |
-
# Function to predict the label and score for English text (AI Detection)
|
| 14 |
-
def predict_en(text):
|
| 15 |
-
res = pipeline_en(text)[0]
|
| 16 |
-
return res['label'], res['score']
|
| 17 |
-
|
| 18 |
# Ensure necessary NLTK data is downloaded for Humanifier
|
| 19 |
nltk.download('wordnet')
|
| 20 |
nltk.download('omw-1.4')
|
|
@@ -52,59 +46,54 @@ def capitalize_sentences_and_nouns(text):
|
|
| 52 |
|
| 53 |
return ' '.join(corrected_text)
|
| 54 |
|
| 55 |
-
# Function to
|
| 56 |
-
def
|
| 57 |
-
# Replace misplaced 'because' and 'but'
|
| 58 |
-
text = text.replace("because, ", "because ")
|
| 59 |
-
text = text.replace("but, ", "but ")
|
| 60 |
-
return text
|
| 61 |
-
|
| 62 |
-
# Function to check and correct tense consistency in sentences using Pattern.en
|
| 63 |
-
def check_tense_consistency(text):
|
| 64 |
doc = nlp(text)
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
for verb in verbs:
|
| 73 |
-
verb_tense = tenses(verb.text)
|
| 74 |
-
if verb_tense:
|
| 75 |
-
common_tense = verb_tense[0][0]
|
| 76 |
-
break
|
| 77 |
-
|
| 78 |
-
# Conjugate all verbs to the common tense if there's inconsistency
|
| 79 |
-
corrected_sentence = []
|
| 80 |
-
for token in sent:
|
| 81 |
-
if token.pos_ == 'VERB' and common_tense:
|
| 82 |
-
corrected_verb = conjugate(token.text, tense=common_tense)
|
| 83 |
-
corrected_sentence.append(corrected_verb)
|
| 84 |
-
else:
|
| 85 |
-
corrected_sentence.append(token.text)
|
| 86 |
-
corrected_sentences.append(' '.join(corrected_sentence))
|
| 87 |
else:
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
return ' '.join(corrected_sentences)
|
| 91 |
|
| 92 |
-
# Function to
|
| 93 |
-
def
|
| 94 |
doc = nlp(text)
|
| 95 |
corrected_text = []
|
| 96 |
-
|
| 97 |
for token in doc:
|
| 98 |
-
if token.
|
| 99 |
-
if token.
|
| 100 |
-
corrected_text.append(
|
| 101 |
-
|
| 102 |
-
corrected_text.append(
|
|
|
|
|
|
|
|
|
|
| 103 |
else:
|
| 104 |
corrected_text.append(token.text)
|
| 105 |
else:
|
| 106 |
corrected_text.append(token.text)
|
|
|
|
| 107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
return ' '.join(corrected_text)
|
| 109 |
|
| 110 |
# Paraphrasing function using SpaCy and NLTK (Humanifier)
|
|
@@ -140,22 +129,18 @@ def paraphrase_with_spacy_nltk(text):
|
|
| 140 |
|
| 141 |
return corrected_text
|
| 142 |
|
| 143 |
-
# Combined function: Paraphrase ->
|
| 144 |
def paraphrase_and_correct(text):
|
| 145 |
# Step 1: Paraphrase the text
|
| 146 |
paraphrased_text = paraphrase_with_spacy_nltk(text)
|
| 147 |
|
| 148 |
-
# Step 2:
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
corrected_articles = check_article_usage(corrected_conjunctions)
|
| 153 |
-
|
| 154 |
-
# Step 4: Capitalize sentences and proper nouns
|
| 155 |
-
capitalized_text = capitalize_sentences_and_nouns(corrected_articles)
|
| 156 |
|
| 157 |
-
# Step
|
| 158 |
-
final_text =
|
| 159 |
|
| 160 |
return final_text
|
| 161 |
|
|
@@ -175,7 +160,7 @@ with gr.Blocks() as demo:
|
|
| 175 |
paraphrase_button = gr.Button("Paraphrase & Correct")
|
| 176 |
output_text = gr.Textbox(label="Paraphrased Text")
|
| 177 |
|
| 178 |
-
# Connect the paraphrasing
|
| 179 |
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
|
| 180 |
|
| 181 |
# Launch the app with the remaining functionalities
|
|
|
|
| 5 |
import subprocess
|
| 6 |
import nltk
|
| 7 |
from nltk.corpus import wordnet
|
|
|
|
| 8 |
|
| 9 |
# Initialize the English text classification pipeline for AI detection
|
| 10 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
# Ensure necessary NLTK data is downloaded for Humanifier
|
| 13 |
nltk.download('wordnet')
|
| 14 |
nltk.download('omw-1.4')
|
|
|
|
| 46 |
|
| 47 |
return ' '.join(corrected_text)
|
| 48 |
|
| 49 |
+
# Function to correct tense errors in a sentence (Tense Correction)
|
| 50 |
+
def correct_tense_errors(text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
doc = nlp(text)
|
| 52 |
+
corrected_text = []
|
| 53 |
+
for token in doc:
|
| 54 |
+
# Check for tense correction based on modal verbs
|
| 55 |
+
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
|
| 56 |
+
# Replace with appropriate verb form
|
| 57 |
+
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
|
| 58 |
+
corrected_text.append(lemma)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
else:
|
| 60 |
+
corrected_text.append(token.text)
|
| 61 |
+
return ' '.join(corrected_text)
|
|
|
|
| 62 |
|
| 63 |
+
# Function to correct singular/plural errors (Singular/Plural Correction)
|
| 64 |
+
def correct_singular_plural_errors(text):
|
| 65 |
doc = nlp(text)
|
| 66 |
corrected_text = []
|
|
|
|
| 67 |
for token in doc:
|
| 68 |
+
if token.pos_ == "NOUN" and token.tag_ == "NN":
|
| 69 |
+
if token.dep_ == "nsubj" and any(t.dep_ == "nummod" for t in token.head.children):
|
| 70 |
+
corrected_text.append(token.text + "s")
|
| 71 |
+
else:
|
| 72 |
+
corrected_text.append(token.text)
|
| 73 |
+
elif token.pos_ == "NOUN" and token.tag_ == "NNS":
|
| 74 |
+
if token.dep_ == "nsubj" and not any(t.dep_ == "nummod" for t in token.head.children):
|
| 75 |
+
corrected_text.append(token.lemma_)
|
| 76 |
else:
|
| 77 |
corrected_text.append(token.text)
|
| 78 |
else:
|
| 79 |
corrected_text.append(token.text)
|
| 80 |
+
return ' '.join(corrected_text)
|
| 81 |
|
| 82 |
+
# Function to check and correct article errors
|
| 83 |
+
def correct_article_errors(text):
|
| 84 |
+
doc = nlp(text)
|
| 85 |
+
corrected_text = []
|
| 86 |
+
for token in doc:
|
| 87 |
+
if token.text in ['a', 'an']:
|
| 88 |
+
next_token = token.nbor(1)
|
| 89 |
+
if token.text == "a" and next_token.text[0].lower() in "aeiou":
|
| 90 |
+
corrected_text.append("an")
|
| 91 |
+
elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
|
| 92 |
+
corrected_text.append("a")
|
| 93 |
+
else:
|
| 94 |
+
corrected_text.append(token.text)
|
| 95 |
+
else:
|
| 96 |
+
corrected_text.append(token.text)
|
| 97 |
return ' '.join(corrected_text)
|
| 98 |
|
| 99 |
# Paraphrasing function using SpaCy and NLTK (Humanifier)
|
|
|
|
| 129 |
|
| 130 |
return corrected_text
|
| 131 |
|
| 132 |
+
# Combined function: Paraphrase -> Capitalization -> Grammar Correction (Humanifier)
|
| 133 |
def paraphrase_and_correct(text):
|
| 134 |
# Step 1: Paraphrase the text
|
| 135 |
paraphrased_text = paraphrase_with_spacy_nltk(text)
|
| 136 |
|
| 137 |
+
# Step 2: Apply grammatical corrections
|
| 138 |
+
corrected_text = correct_article_errors(paraphrased_text)
|
| 139 |
+
corrected_text = correct_tense_errors(corrected_text)
|
| 140 |
+
corrected_text = correct_singular_plural_errors(corrected_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
+
# Step 3: Capitalize sentences and proper nouns
|
| 143 |
+
final_text = capitalize_sentences_and_nouns(corrected_text)
|
| 144 |
|
| 145 |
return final_text
|
| 146 |
|
|
|
|
| 160 |
paraphrase_button = gr.Button("Paraphrase & Correct")
|
| 161 |
output_text = gr.Textbox(label="Paraphrased Text")
|
| 162 |
|
| 163 |
+
# Connect the paraphrasing function to the button
|
| 164 |
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
|
| 165 |
|
| 166 |
# Launch the app with the remaining functionalities
|