Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ import subprocess
|
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet
|
8 |
from spellchecker import SpellChecker
|
|
|
9 |
|
10 |
# Initialize the English text classification pipeline for AI detection
|
11 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
@@ -29,7 +30,7 @@ def predict_en(text):
|
|
29 |
res = pipeline_en(text)[0]
|
30 |
return res['label'], res['score']
|
31 |
|
32 |
-
#
|
33 |
def get_synonyms_nltk(word, pos):
|
34 |
synsets = wordnet.synsets(word, pos=pos)
|
35 |
if synsets:
|
@@ -37,6 +38,74 @@ def get_synonyms_nltk(word, pos):
|
|
37 |
return [lemma.name() for lemma in lemmas]
|
38 |
return []
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
# Function to remove redundant and meaningless words
|
41 |
def remove_redundant_words(text):
|
42 |
doc = nlp(text)
|
@@ -133,31 +202,6 @@ def correct_article_errors(text):
|
|
133 |
corrected_text.append(token.text)
|
134 |
return ' '.join(corrected_text)
|
135 |
|
136 |
-
# Function to get the correct synonym while maintaining verb form
|
137 |
-
def replace_with_synonym(token):
|
138 |
-
pos = None
|
139 |
-
if token.pos_ == "VERB":
|
140 |
-
pos = wordnet.VERB
|
141 |
-
elif token.pos_ == "NOUN":
|
142 |
-
pos = wordnet.NOUN
|
143 |
-
elif token.pos_ == "ADJ":
|
144 |
-
pos = wordnet.ADJ
|
145 |
-
elif token.pos_ == "ADV":
|
146 |
-
pos = wordnet.ADV
|
147 |
-
|
148 |
-
synonyms = get_synonyms_nltk(token.lemma_, pos)
|
149 |
-
|
150 |
-
if synonyms:
|
151 |
-
synonym = synonyms[0]
|
152 |
-
if token.tag_ == "VBG": # Present participle (e.g., running)
|
153 |
-
synonym = synonym + 'ing'
|
154 |
-
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
|
155 |
-
synonym = synonym + 'ed'
|
156 |
-
elif token.tag_ == "VBZ": # Third-person singular present
|
157 |
-
synonym = synonym + 's'
|
158 |
-
return synonym
|
159 |
-
return token.text
|
160 |
-
|
161 |
# Function to check for and avoid double negatives
|
162 |
def correct_double_negatives(text):
|
163 |
doc = nlp(text)
|
@@ -191,57 +235,6 @@ def correct_spelling(text):
|
|
191 |
corrected_words.append(corrected_word)
|
192 |
return ' '.join(corrected_words)
|
193 |
|
194 |
-
# Function to rephrase text and replace words with their synonyms while maintaining form
|
195 |
-
def rephrase_with_synonyms(text):
|
196 |
-
doc = nlp(text)
|
197 |
-
rephrased_text = []
|
198 |
-
|
199 |
-
for token in doc:
|
200 |
-
pos_tag = None
|
201 |
-
if token.pos_ == "NOUN":
|
202 |
-
pos_tag = wordnet.NOUN
|
203 |
-
elif token.pos_ == "VERB":
|
204 |
-
pos_tag = wordnet.VERB
|
205 |
-
elif token.pos_ == "ADJ":
|
206 |
-
pos_tag = wordnet.ADJ
|
207 |
-
elif token.pos_ == "ADV":
|
208 |
-
pos_tag = wordnet.ADV
|
209 |
-
|
210 |
-
if pos_tag:
|
211 |
-
synonyms = get_synonyms_nltk(token.lemma_, pos_tag)
|
212 |
-
if synonyms:
|
213 |
-
# Use a more dynamic approach for synonyms
|
214 |
-
synonym = max(synonyms, key=lambda s: wordnet.synsets(s, pos=pos_tag)) # Select based on the number of synsets
|
215 |
-
if token.pos_ == "VERB":
|
216 |
-
if token.tag_ == "VBG": # Present participle (e.g., running)
|
217 |
-
synonym = synonym + 'ing'
|
218 |
-
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
|
219 |
-
synonym = synonym + 'ed'
|
220 |
-
elif token.tag_ == "VBZ": # Third-person singular present
|
221 |
-
synonym = synonym + 's'
|
222 |
-
elif token.pos_ == "NOUN" and token.tag_ == "NNS": # Plural nouns
|
223 |
-
synonym += 's' if not synonym.endswith('s') else ""
|
224 |
-
rephrased_text.append(synonym)
|
225 |
-
else:
|
226 |
-
rephrased_text.append(token.text)
|
227 |
-
else:
|
228 |
-
rephrased_text.append(token.text)
|
229 |
-
|
230 |
-
return ' '.join(rephrased_text)
|
231 |
-
|
232 |
-
# Retain the structure of the input text (headings, paragraphs, line breaks)
|
233 |
-
def retain_structure(text):
|
234 |
-
lines = text.split("\n")
|
235 |
-
formatted_lines = []
|
236 |
-
|
237 |
-
for line in lines:
|
238 |
-
if line.strip().isupper(): # Heading if all caps
|
239 |
-
formatted_lines.append(f"# {line.strip()}") # Treat it as a heading
|
240 |
-
else:
|
241 |
-
formatted_lines.append(line) # Otherwise, it's a paragraph or normal text
|
242 |
-
|
243 |
-
return "\n".join(formatted_lines)
|
244 |
-
|
245 |
# Function to paraphrase and correct grammar with enhanced accuracy and retain structure
|
246 |
def paraphrase_and_correct(text):
|
247 |
# Retain the structure (headings, paragraphs, line breaks)
|
@@ -266,7 +259,7 @@ def paraphrase_and_correct(text):
|
|
266 |
paraphrased_text = correct_double_negatives(paraphrased_text)
|
267 |
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
|
268 |
|
269 |
-
# Rephrase with synonyms while maintaining grammatical forms
|
270 |
paraphrased_text = rephrase_with_synonyms(paraphrased_text)
|
271 |
|
272 |
# Correct spelling errors
|
|
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet
|
8 |
from spellchecker import SpellChecker
|
9 |
+
import random # Import random for versatile synonym replacement
|
10 |
|
11 |
# Initialize the English text classification pipeline for AI detection
|
12 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
|
|
30 |
res = pipeline_en(text)[0]
|
31 |
return res['label'], res['score']
|
32 |
|
33 |
+
# Enhanced function to get synonyms using NLTK WordNet
|
34 |
def get_synonyms_nltk(word, pos):
|
35 |
synsets = wordnet.synsets(word, pos=pos)
|
36 |
if synsets:
|
|
|
38 |
return [lemma.name() for lemma in lemmas]
|
39 |
return []
|
40 |
|
41 |
+
# Retain the structure of the input text (headings, paragraphs, line breaks)
|
42 |
+
def retain_structure(text):
|
43 |
+
lines = text.split("\n")
|
44 |
+
formatted_lines = []
|
45 |
+
|
46 |
+
for line in lines:
|
47 |
+
if line.strip().isupper(): # Heading if all caps
|
48 |
+
formatted_lines.append(f"# {line.strip()}") # Treat it as a heading
|
49 |
+
else:
|
50 |
+
formatted_lines.append(line) # Otherwise, it's a paragraph or normal text
|
51 |
+
|
52 |
+
return "\n".join(formatted_lines)
|
53 |
+
|
54 |
+
# Dynamic and versatile synonym replacement
|
55 |
+
def replace_with_synonym(token):
|
56 |
+
pos = None
|
57 |
+
if token.pos_ == "VERB":
|
58 |
+
pos = wordnet.VERB
|
59 |
+
elif token.pos_ == "NOUN":
|
60 |
+
pos = wordnet.NOUN
|
61 |
+
elif token.pos_ == "ADJ":
|
62 |
+
pos = wordnet.ADJ
|
63 |
+
elif token.pos_ == "ADV":
|
64 |
+
pos = wordnet.ADV
|
65 |
+
|
66 |
+
synonyms = get_synonyms_nltk(token.lemma_, pos)
|
67 |
+
|
68 |
+
if synonyms:
|
69 |
+
# Randomly choose a synonym to add more versatility
|
70 |
+
synonym = random.choice(synonyms)
|
71 |
+
if token.tag_ == "VBG": # Present participle (e.g., running)
|
72 |
+
synonym = synonym + 'ing'
|
73 |
+
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
|
74 |
+
synonym = synonym + 'ed'
|
75 |
+
elif token.tag_ == "VBZ": # Third-person singular present
|
76 |
+
synonym = synonym + 's'
|
77 |
+
return synonym
|
78 |
+
return token.text
|
79 |
+
|
80 |
+
# Function to rephrase text and replace words with versatile synonyms
|
81 |
+
def rephrase_with_synonyms(text):
|
82 |
+
doc = nlp(text)
|
83 |
+
rephrased_text = []
|
84 |
+
|
85 |
+
for token in doc:
|
86 |
+
pos_tag = None
|
87 |
+
if token.pos_ == "NOUN":
|
88 |
+
pos_tag = wordnet.NOUN
|
89 |
+
elif token.pos_ == "VERB":
|
90 |
+
pos_tag = wordnet.VERB
|
91 |
+
elif token.pos_ == "ADJ":
|
92 |
+
pos_tag = wordnet.ADJ
|
93 |
+
elif token.pos_ == "ADV":
|
94 |
+
pos_tag = wordnet.ADV
|
95 |
+
|
96 |
+
if pos_tag:
|
97 |
+
synonyms = get_synonyms_nltk(token.text, pos_tag)
|
98 |
+
if synonyms:
|
99 |
+
# Use the dynamic synonym replacement for versatility
|
100 |
+
synonym = replace_with_synonym(token)
|
101 |
+
rephrased_text.append(synonym)
|
102 |
+
else:
|
103 |
+
rephrased_text.append(token.text)
|
104 |
+
else:
|
105 |
+
rephrased_text.append(token.text)
|
106 |
+
|
107 |
+
return ' '.join(rephrased_text)
|
108 |
+
|
109 |
# Function to remove redundant and meaningless words
|
110 |
def remove_redundant_words(text):
|
111 |
doc = nlp(text)
|
|
|
202 |
corrected_text.append(token.text)
|
203 |
return ' '.join(corrected_text)
|
204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
# Function to check for and avoid double negatives
|
206 |
def correct_double_negatives(text):
|
207 |
doc = nlp(text)
|
|
|
235 |
corrected_words.append(corrected_word)
|
236 |
return ' '.join(corrected_words)
|
237 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
# Function to paraphrase and correct grammar with enhanced accuracy and retain structure
|
239 |
def paraphrase_and_correct(text):
|
240 |
# Retain the structure (headings, paragraphs, line breaks)
|
|
|
259 |
paraphrased_text = correct_double_negatives(paraphrased_text)
|
260 |
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
|
261 |
|
262 |
+
# Rephrase with versatile synonyms while maintaining grammatical forms
|
263 |
paraphrased_text = rephrase_with_synonyms(paraphrased_text)
|
264 |
|
265 |
# Correct spelling errors
|