Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,16 @@
|
|
1 |
-
# Import dependencies
|
2 |
import gradio as gr
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
import torch
|
5 |
-
import nltk
|
6 |
-
from nltk.corpus import wordnet
|
7 |
import spacy
|
8 |
import subprocess
|
|
|
|
|
9 |
|
10 |
-
from gensim.models import KeyedVectors
|
11 |
from gensim import downloader as api
|
12 |
-
from nltk.tokenize import word_tokenize
|
13 |
-
|
14 |
-
# Download NLTK data (if not already downloaded)
|
15 |
-
nltk.download('punkt')
|
16 |
-
nltk.download('stopwords')
|
17 |
|
|
|
|
|
|
|
18 |
|
19 |
# Ensure the spaCy model is installed
|
20 |
try:
|
@@ -42,37 +38,42 @@ def detect_ai_generated(text):
|
|
42 |
ai_probability = probabilities[0][1].item() # Probability of being AI-generated
|
43 |
return f"AI-Generated Content Probability: {ai_probability:.2f}%"
|
44 |
|
45 |
-
# Function to get synonyms using
|
46 |
-
def
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
# Paraphrasing function using Gensim for synonym replacement
|
54 |
-
def paraphrase_with_gensim(text):
|
55 |
-
words = word_tokenize(text)
|
56 |
-
paraphrased_words = []
|
57 |
-
for word in words:
|
58 |
-
synonyms = get_synonyms_gensim(word.lower())
|
59 |
-
if synonyms:
|
60 |
-
paraphrased_words.append(synonyms[0])
|
61 |
-
else:
|
62 |
-
paraphrased_words.append(word)
|
63 |
-
return ' '.join(paraphrased_words)
|
64 |
|
65 |
-
# Paraphrasing function using spaCy
|
66 |
-
def
|
67 |
doc = nlp(text)
|
68 |
paraphrased_words = []
|
|
|
69 |
for token in doc:
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
paraphrased_words.append(synonyms[0])
|
73 |
else:
|
74 |
paraphrased_words.append(token.text)
|
75 |
-
|
|
|
|
|
|
|
76 |
|
77 |
# Gradio interface definition
|
78 |
with gr.Blocks() as interface:
|
@@ -80,14 +81,12 @@ with gr.Blocks() as interface:
|
|
80 |
with gr.Column():
|
81 |
text_input = gr.Textbox(lines=5, label="Input Text")
|
82 |
detect_button = gr.Button("AI Detection")
|
83 |
-
|
84 |
-
paraphrase_spacy_button = gr.Button("Paraphrase with spaCy")
|
85 |
with gr.Column():
|
86 |
output_text = gr.Textbox(label="Output")
|
87 |
|
88 |
detect_button.click(detect_ai_generated, inputs=text_input, outputs=output_text)
|
89 |
-
|
90 |
-
paraphrase_spacy_button.click(paraphrase_with_spacy, inputs=text_input, outputs=output_text)
|
91 |
|
92 |
# Launch the Gradio app
|
93 |
interface.launch(debug=False)
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
import torch
|
|
|
|
|
4 |
import spacy
|
5 |
import subprocess
|
6 |
+
import nltk
|
7 |
+
from nltk.corpus import wordnet
|
8 |
|
|
|
9 |
from gensim import downloader as api
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# Ensure necessary NLTK data is downloaded
|
12 |
+
nltk.download('wordnet')
|
13 |
+
nltk.download('omw-1.4')
|
14 |
|
15 |
# Ensure the spaCy model is installed
|
16 |
try:
|
|
|
38 |
ai_probability = probabilities[0][1].item() # Probability of being AI-generated
|
39 |
return f"AI-Generated Content Probability: {ai_probability:.2f}%"
|
40 |
|
41 |
+
# Function to get synonyms using NLTK WordNet
|
42 |
+
def get_synonyms_nltk(word, pos):
|
43 |
+
synsets = wordnet.synsets(word, pos=pos)
|
44 |
+
if synsets:
|
45 |
+
lemmas = synsets[0].lemmas()
|
46 |
+
return [lemma.name() for lemma in lemmas]
|
47 |
+
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
# Paraphrasing function using spaCy and NLTK
|
50 |
+
def paraphrase_with_spacy_nltk(text):
|
51 |
doc = nlp(text)
|
52 |
paraphrased_words = []
|
53 |
+
|
54 |
for token in doc:
|
55 |
+
# Map spaCy POS tags to WordNet POS tags
|
56 |
+
pos = None
|
57 |
+
if token.pos_ in {"NOUN"}:
|
58 |
+
pos = wordnet.NOUN
|
59 |
+
elif token.pos_ in {"VERB"}:
|
60 |
+
pos = wordnet.VERB
|
61 |
+
elif token.pos_ in {"ADJ"}:
|
62 |
+
pos = wordnet.ADJ
|
63 |
+
elif token.pos_ in {"ADV"}:
|
64 |
+
pos = wordnet.ADV
|
65 |
+
|
66 |
+
synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else []
|
67 |
+
|
68 |
+
# Replace with a synonym only if it makes sense
|
69 |
+
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower():
|
70 |
paraphrased_words.append(synonyms[0])
|
71 |
else:
|
72 |
paraphrased_words.append(token.text)
|
73 |
+
|
74 |
+
# Join the words back into a sentence
|
75 |
+
paraphrased_sentence = ' '.join(paraphrased_words)
|
76 |
+
return paraphrased_sentence
|
77 |
|
78 |
# Gradio interface definition
|
79 |
with gr.Blocks() as interface:
|
|
|
81 |
with gr.Column():
|
82 |
text_input = gr.Textbox(lines=5, label="Input Text")
|
83 |
detect_button = gr.Button("AI Detection")
|
84 |
+
paraphrase_button = gr.Button("Paraphrase with spaCy & NLTK")
|
|
|
85 |
with gr.Column():
|
86 |
output_text = gr.Textbox(label="Output")
|
87 |
|
88 |
detect_button.click(detect_ai_generated, inputs=text_input, outputs=output_text)
|
89 |
+
paraphrase_button.click(paraphrase_with_spacy_nltk, inputs=text_input, outputs=output_text)
|
|
|
90 |
|
91 |
# Launch the Gradio app
|
92 |
interface.launch(debug=False)
|