Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ import subprocess
|
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet
|
8 |
from spellchecker import SpellChecker
|
|
|
9 |
|
10 |
# Initialize the English text classification pipeline for AI detection
|
11 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
@@ -21,7 +22,7 @@ nltk.download('omw-1.4')
|
|
21 |
try:
|
22 |
nlp = spacy.load("en_core_web_sm")
|
23 |
except OSError:
|
24 |
-
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
25 |
nlp = spacy.load("en_core_web_sm")
|
26 |
|
27 |
# Function to predict the label and score for English text (AI Detection)
|
@@ -133,66 +134,17 @@ def correct_article_errors(text):
|
|
133 |
corrected_text.append(token.text)
|
134 |
return ' '.join(corrected_text)
|
135 |
|
136 |
-
# Function to
|
137 |
-
def
|
138 |
-
pos = None
|
139 |
-
if token.pos_ == "VERB":
|
140 |
-
pos = wordnet.VERB
|
141 |
-
elif token.pos_ == "NOUN":
|
142 |
-
pos = wordnet.NOUN
|
143 |
-
elif token.pos_ == "ADJ":
|
144 |
-
pos = wordnet.ADJ
|
145 |
-
elif token.pos_ == "ADV":
|
146 |
-
pos = wordnet.ADV
|
147 |
-
|
148 |
synonyms = get_synonyms_nltk(token.lemma_, pos)
|
149 |
-
|
150 |
if synonyms:
|
151 |
-
|
152 |
-
|
153 |
-
synonym = synonym + 'ing'
|
154 |
-
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
|
155 |
-
synonym = synonym + 'ed'
|
156 |
-
elif token.tag_ == "VBZ": # Third-person singular present
|
157 |
-
synonym = synonym + 's'
|
158 |
-
return synonym
|
159 |
return token.text
|
160 |
|
161 |
-
# Function to
|
162 |
-
def
|
163 |
-
doc = nlp(text)
|
164 |
-
corrected_text = []
|
165 |
-
for token in doc:
|
166 |
-
if token.text.lower() == "not" and any(child.text.lower() == "never" for child in token.head.children):
|
167 |
-
corrected_text.append("always")
|
168 |
-
else:
|
169 |
-
corrected_text.append(token.text)
|
170 |
-
return ' '.join(corrected_text)
|
171 |
-
|
172 |
-
# Function to ensure subject-verb agreement
|
173 |
-
def ensure_subject_verb_agreement(text):
|
174 |
-
doc = nlp(text)
|
175 |
-
corrected_text = []
|
176 |
-
for token in doc:
|
177 |
-
if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
|
178 |
-
if token.tag_ == "NN" and token.head.tag_ != "VBZ": # Singular noun, should use singular verb
|
179 |
-
corrected_text.append(token.head.lemma_ + "s")
|
180 |
-
elif token.tag_ == "NNS" and token.head.tag_ == "VBZ": # Plural noun, should not use singular verb
|
181 |
-
corrected_text.append(token.head.lemma_)
|
182 |
-
corrected_text.append(token.text)
|
183 |
-
return ' '.join(corrected_text)
|
184 |
-
|
185 |
-
# Function to correct spelling errors
|
186 |
-
def correct_spelling(text):
|
187 |
-
words = text.split()
|
188 |
-
corrected_words = []
|
189 |
-
for word in words:
|
190 |
-
corrected_word = spell.correction(word)
|
191 |
-
corrected_words.append(corrected_word)
|
192 |
-
return ' '.join(corrected_words)
|
193 |
-
|
194 |
-
# Function to rephrase text and replace words with their synonyms while maintaining form
|
195 |
-
def rephrase_with_synonyms(text):
|
196 |
doc = nlp(text)
|
197 |
rephrased_text = []
|
198 |
|
@@ -206,29 +158,25 @@ def rephrase_with_synonyms(text):
|
|
206 |
pos_tag = wordnet.ADJ
|
207 |
elif token.pos_ == "ADV":
|
208 |
pos_tag = wordnet.ADV
|
209 |
-
|
210 |
if pos_tag:
|
211 |
-
|
212 |
-
if
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
synonym += 's' if not synonym.endswith('s') else ""
|
223 |
-
rephrased_text.append(synonym)
|
224 |
-
else:
|
225 |
-
rephrased_text.append(token.text)
|
226 |
else:
|
227 |
rephrased_text.append(token.text)
|
228 |
|
229 |
return ' '.join(rephrased_text)
|
230 |
|
231 |
-
#
|
232 |
def retain_structure(text):
|
233 |
lines = text.split("\n")
|
234 |
formatted_lines = []
|
@@ -242,35 +190,24 @@ def retain_structure(text):
|
|
242 |
return "\n".join(formatted_lines)
|
243 |
|
244 |
# Function to paraphrase and correct grammar with enhanced accuracy and retain structure
|
245 |
-
def
|
246 |
-
# Retain the structure (headings, paragraphs, line breaks)
|
247 |
structured_text = retain_structure(text)
|
248 |
|
249 |
-
#
|
250 |
-
|
251 |
-
|
252 |
-
# Capitalize sentences and nouns
|
253 |
-
paraphrased_text = capitalize_sentences_and_nouns(cleaned_text)
|
254 |
|
255 |
-
#
|
|
|
|
|
256 |
paraphrased_text = force_first_letter_capital(paraphrased_text)
|
257 |
-
|
258 |
-
# Handle possessives properly
|
259 |
paraphrased_text = handle_possessives(paraphrased_text)
|
260 |
-
|
261 |
-
# Apply grammatical corrections
|
262 |
paraphrased_text = correct_article_errors(paraphrased_text)
|
263 |
paraphrased_text = correct_singular_plural_errors(paraphrased_text)
|
264 |
paraphrased_text = correct_tense_errors(paraphrased_text)
|
265 |
paraphrased_text = correct_double_negatives(paraphrased_text)
|
266 |
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
|
267 |
-
|
268 |
-
# Rephrase with synonyms while maintaining grammatical forms
|
269 |
-
paraphrased_text = rephrase_with_synonyms(paraphrased_text)
|
270 |
-
|
271 |
-
# Correct spelling errors
|
272 |
paraphrased_text = correct_spelling(paraphrased_text)
|
273 |
-
|
274 |
return paraphrased_text
|
275 |
|
276 |
# Gradio app setup with two tabs
|
@@ -290,6 +227,6 @@ with gr.Blocks() as demo:
|
|
290 |
result2 = gr.Textbox(lines=5, label='Corrected Text')
|
291 |
|
292 |
# Connect the paraphrasing and correction function to the button
|
293 |
-
button2.click(fn=
|
294 |
|
295 |
-
demo.launch(share=True)
|
|
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet
|
8 |
from spellchecker import SpellChecker
|
9 |
+
import random
|
10 |
|
11 |
# Initialize the English text classification pipeline for AI detection
|
12 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
|
|
22 |
try:
|
23 |
nlp = spacy.load("en_core_web_sm")
|
24 |
except OSError:
|
25 |
+
subprocess.run(["python", "-m",", "spacy", "download", "en_core_web_sm"])
|
26 |
nlp = spacy.load("en_core_web_sm")
|
27 |
|
28 |
# Function to predict the label and score for English text (AI Detection)
|
|
|
134 |
corrected_text.append(token.text)
|
135 |
return ' '.join(corrected_text)
|
136 |
|
137 |
+
# Function to dynamically choose synonyms with more options
|
138 |
+
def dynamic_synonyms(token, pos):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
synonyms = get_synonyms_nltk(token.lemma_, pos)
|
140 |
+
# Choose a random synonym to increase variety
|
141 |
if synonyms:
|
142 |
+
random_synonym = random.choice(synonyms)
|
143 |
+
return random_synonym
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
return token.text
|
145 |
|
146 |
+
# Function to rephrase text and replace words with more versatile synonyms
|
147 |
+
def versatile_rephrase(text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
doc = nlp(text)
|
149 |
rephrased_text = []
|
150 |
|
|
|
158 |
pos_tag = wordnet.ADJ
|
159 |
elif token.pos_ == "ADV":
|
160 |
pos_tag = wordnet.ADV
|
161 |
+
|
162 |
if pos_tag:
|
163 |
+
synonym = dynamic_synonyms(token, pos_tag)
|
164 |
+
if token.pos_ == "VERB":
|
165 |
+
if token.tag_ == "VBG": # Present participle (e.g., running)
|
166 |
+
synonym = synonym + 'ing'
|
167 |
+
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
|
168 |
+
synonym = synonym + 'ed'
|
169 |
+
elif token.tag_ == "VBZ": # Third-person singular present
|
170 |
+
synonym = synonym + 's'
|
171 |
+
elif token.pos_ == "NOUN" and token.tag_ == "NNS": # Plural nouns
|
172 |
+
synonym += 's' if not synonym ends with 's' else ""
|
173 |
+
rephrased_text.append(synonym)
|
|
|
|
|
|
|
|
|
174 |
else:
|
175 |
rephrased_text.append(token.text)
|
176 |
|
177 |
return ' '.join(rephrased_text)
|
178 |
|
179 |
+
# Function to retain the structure of the input text (headings, paragraphs, line breaks)
|
180 |
def retain_structure(text):
|
181 |
lines = text.split("\n")
|
182 |
formatted_lines = []
|
|
|
190 |
return "\n".join(formatted_lines)
|
191 |
|
192 |
# Function to paraphrase and correct grammar with enhanced accuracy and retain structure
|
193 |
+
def paraphrase_and_correct_with_structure(text):
|
|
|
194 |
structured_text = retain_structure(text)
|
195 |
|
196 |
+
# Rephrase with more versatile synonyms while maintaining grammatical forms
|
197 |
+
paraphrased_text = versatile_rephrase(structured_text)
|
|
|
|
|
|
|
198 |
|
199 |
+
# Apply grammatical corrections on the rephrased text
|
200 |
+
paraphrased_text = remove_redundant_words(paraphrased_text)
|
201 |
+
paraphrased_text = capitalize_sentences_and_nouns(paraphrased_text)
|
202 |
paraphrased_text = force_first_letter_capital(paraphrased_text)
|
|
|
|
|
203 |
paraphrased_text = handle_possessives(paraphrased_text)
|
|
|
|
|
204 |
paraphrased_text = correct_article_errors(paraphrased_text)
|
205 |
paraphrased_text = correct_singular_plural_errors(paraphrased_text)
|
206 |
paraphrased_text = correct_tense_errors(paraphrased_text)
|
207 |
paraphrased_text = correct_double_negatives(paraphrased_text)
|
208 |
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
|
|
|
|
|
|
|
|
|
|
|
209 |
paraphrased_text = correct_spelling(paraphrased_text)
|
210 |
+
|
211 |
return paraphrased_text
|
212 |
|
213 |
# Gradio app setup with two tabs
|
|
|
227 |
result2 = gr.Textbox(lines=5, label='Corrected Text')
|
228 |
|
229 |
# Connect the paraphrasing and correction function to the button
|
230 |
+
button2.click(fn=paraphrase_and_correct_with_structure, inputs=t2, outputs=result2)
|
231 |
|
232 |
+
demo.launch(share=True)
|