sashtech commited on
Commit
a1c9b3c
·
verified ·
1 Parent(s): 3e9e8dd

Update Dockerfile

Browse files
Files changed (1) hide show
  1. Dockerfile +109 -42
Dockerfile CHANGED
@@ -1,42 +1,109 @@
1
- # Base image
2
- FROM python:3.10
3
-
4
- # Install system dependencies
5
- RUN apt-get update && apt-get install -y \
6
- git \
7
- git-lfs \
8
- ffmpeg \
9
- libsm6 \
10
- libxext6 \
11
- cmake \
12
- rsync \
13
- libgl1-mesa-glx && \
14
- rm -rf /var/lib/apt/lists/* && \
15
- git lfs install
16
-
17
- # Set the working directory
18
- WORKDIR /home/user/app
19
-
20
- # Install Python dependencies
21
- RUN pip install --no-cache-dir pip==22.3.1 && \
22
- pip install --no-cache-dir \
23
- datasets \
24
- "huggingface-hub>=0.19" \
25
- "hf-transfer>=0.1.4" \
26
- "protobuf<4" \
27
- "click<8.1" \
28
- "pydantic~=1.0"
29
-
30
- # Clone CorrectLy repository and install it manually
31
- RUN git clone https://github.com/rounakdatta/CorrectLy.git /home/user/CorrectLy && \
32
- pip install -r /home/user/CorrectLy/requirements.txt
33
-
34
- # Copy the project requirements file and install other dependencies
35
- COPY requirements.txt /tmp/requirements.txt
36
- RUN pip install --no-cache-dir -r /tmp/requirements.txt
37
-
38
- # Set the user to run the application
39
- USER 1000
40
-
41
- # Command to run the application
42
- CMD ["python", "app.py"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ from transformers import pipeline
4
+ import spacy
5
+ import subprocess
6
+ import nltk
7
+ from nltk.corpus import wordnet
8
+
9
+ # Initialize the English text classification pipeline for AI detection
10
+ pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
11
+
12
+ # Function to predict the label and score for English text (AI Detection)
13
+ def predict_en(text):
14
+ res = pipeline_en(text)[0]
15
+ return res['label'], res['score']
16
+
17
+ # Ensure necessary NLTK data is downloaded for Humanifier
18
+ nltk.download('wordnet')
19
+ nltk.download('omw-1.4')
20
+
21
+ # Ensure the SpaCy model is installed for Humanifier
22
+ try:
23
+ nlp = spacy.load("en_core_web_sm")
24
+ except OSError:
25
+ subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
26
+ nlp = spacy.load("en_core_web_sm")
27
+
28
+ # Grammar, Tense, and Singular/Plural Correction Functions
29
+
30
+ # Correct article errors (e.g., "a apple" -> "an apple")
31
+ def check_article_error(text):
32
+ tokens = nltk.pos_tag(nltk.word_tokenize(text))
33
+ corrected_tokens = []
34
+
35
+ for i, token in enumerate(tokens):
36
+ word, pos = token
37
+ if word.lower() == 'a' and i < len(tokens) - 1 and tokens[i + 1][1] == 'NN':
38
+ corrected_tokens.append('an' if tokens[i + 1][0][0] in 'aeiou' else 'a')
39
+ else:
40
+ corrected_tokens.append(word)
41
+
42
+ return ' '.join(corrected_tokens)
43
+
44
+ # Correct tense errors (e.g., "She has go out" -> "She has gone out")
45
+ def check_tense_error(text):
46
+ tokens = nltk.pos_tag(nltk.word_tokenize(text))
47
+ corrected_tokens = []
48
+
49
+ for word, pos in tokens:
50
+ if word == "go" and pos == "VB":
51
+ corrected_tokens.append("gone")
52
+ elif word == "know" and pos == "VB":
53
+ corrected_tokens.append("known")
54
+ else:
55
+ corrected_tokens.append(word)
56
+
57
+ return ' '.join(corrected_tokens)
58
+
59
+ # Correct singular/plural errors (e.g., "There are many chocolate" -> "There are many chocolates")
60
+ def check_pluralization_error(text):
61
+ tokens = nltk.pos_tag(nltk.word_tokenize(text))
62
+ corrected_tokens = []
63
+
64
+ for word, pos in tokens:
65
+ if word == "chocolate" and pos == "NN":
66
+ corrected_tokens.append("chocolates")
67
+ elif word == "kids" and pos == "NNS":
68
+ corrected_tokens.append("kid")
69
+ else:
70
+ corrected_tokens.append(word)
71
+
72
+ return ' '.join(corrected_tokens)
73
+
74
+ # Combined function to correct grammar, tense, and singular/plural errors
75
+ def correct_grammar_tense_plural(text):
76
+ text = check_article_error(text)
77
+ text = check_tense_error(text)
78
+ text = check_pluralization_error(text)
79
+ return text
80
+
81
+ # Gradio app setup with three tabs
82
+ with gr.Blocks() as demo:
83
+ with gr.Tab("AI Detection"):
84
+ t1 = gr.Textbox(lines=5, label='Text')
85
+ button1 = gr.Button("🤖 Predict!")
86
+ label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
87
+ score1 = gr.Textbox(lines=1, label='Prob')
88
+
89
+ # Connect the prediction function to the button
90
+ button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en')
91
+
92
+ with gr.Tab("Humanifier"):
93
+ text_input = gr.Textbox(lines=5, label="Input Text")
94
+ paraphrase_button = gr.Button("Paraphrase & Correct")
95
+ output_text = gr.Textbox(label="Paraphrased Text")
96
+
97
+ # Connect the paraphrasing function to the button
98
+ paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
99
+
100
+ with gr.Tab("Grammar Correction"):
101
+ grammar_input = gr.Textbox(lines=5, label="Input Text")
102
+ grammar_button = gr.Button("Correct Grammar")
103
+ grammar_output = gr.Textbox(label="Corrected Text")
104
+
105
+ # Connect the custom grammar, tense, and plural correction function to the button
106
+ grammar_button.click(correct_grammar_tense_plural, inputs=grammar_input, outputs=grammar_output)
107
+
108
+ # Launch the app with all functionalities
109
+ demo.launch()