Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ import subprocess
|
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet
|
8 |
from spellchecker import SpellChecker
|
9 |
-
import random # Import random for versatile synonym replacement
|
10 |
|
11 |
# Initialize the English text classification pipeline for AI detection
|
12 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
@@ -30,7 +29,7 @@ def predict_en(text):
|
|
30 |
res = pipeline_en(text)[0]
|
31 |
return res['label'], res['score']
|
32 |
|
33 |
-
#
|
34 |
def get_synonyms_nltk(word, pos):
|
35 |
synsets = wordnet.synsets(word, pos=pos)
|
36 |
if synsets:
|
@@ -38,74 +37,6 @@ def get_synonyms_nltk(word, pos):
|
|
38 |
return [lemma.name() for lemma in lemmas]
|
39 |
return []
|
40 |
|
41 |
-
# Retain the structure of the input text (headings, paragraphs, line breaks)
|
42 |
-
def retain_structure(text):
|
43 |
-
lines = text.split("\n")
|
44 |
-
formatted_lines = []
|
45 |
-
|
46 |
-
for line in lines:
|
47 |
-
if line.strip().isupper(): # Heading if all caps
|
48 |
-
formatted_lines.append(f"# {line.strip()}") # Treat it as a heading
|
49 |
-
else:
|
50 |
-
formatted_lines.append(line) # Otherwise, it's a paragraph or normal text
|
51 |
-
|
52 |
-
return "\n".join(formatted_lines)
|
53 |
-
|
54 |
-
# Dynamic and versatile synonym replacement
|
55 |
-
def replace_with_synonym(token):
|
56 |
-
pos = None
|
57 |
-
if token.pos_ == "VERB":
|
58 |
-
pos = wordnet.VERB
|
59 |
-
elif token.pos_ == "NOUN":
|
60 |
-
pos = wordnet.NOUN
|
61 |
-
elif token.pos_ == "ADJ":
|
62 |
-
pos = wordnet.ADJ
|
63 |
-
elif token.pos_ == "ADV":
|
64 |
-
pos = wordnet.ADV
|
65 |
-
|
66 |
-
synonyms = get_synonyms_nltk(token.lemma_, pos)
|
67 |
-
|
68 |
-
if synonyms:
|
69 |
-
# Randomly choose a synonym to add more versatility
|
70 |
-
synonym = random.choice(synonyms)
|
71 |
-
if token.tag_ == "VBG": # Present participle (e.g., running)
|
72 |
-
synonym = synonym + 'ing'
|
73 |
-
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
|
74 |
-
synonym = synonym + 'ed'
|
75 |
-
elif token.tag_ == "VBZ": # Third-person singular present
|
76 |
-
synonym = synonym + 's'
|
77 |
-
return synonym
|
78 |
-
return token.text
|
79 |
-
|
80 |
-
# Function to rephrase text and replace words with versatile synonyms
|
81 |
-
def rephrase_with_synonyms(text):
|
82 |
-
doc = nlp(text)
|
83 |
-
rephrased_text = []
|
84 |
-
|
85 |
-
for token in doc:
|
86 |
-
pos_tag = None
|
87 |
-
if token.pos_ == "NOUN":
|
88 |
-
pos_tag = wordnet.NOUN
|
89 |
-
elif token.pos_ == "VERB":
|
90 |
-
pos_tag = wordnet.VERB
|
91 |
-
elif token.pos_ == "ADJ":
|
92 |
-
pos_tag = wordnet.ADJ
|
93 |
-
elif token.pos_ == "ADV":
|
94 |
-
pos_tag = wordnet.ADV
|
95 |
-
|
96 |
-
if pos_tag:
|
97 |
-
synonyms = get_synonyms_nltk(token.text, pos_tag)
|
98 |
-
if synonyms:
|
99 |
-
# Use the dynamic synonym replacement for versatility
|
100 |
-
synonym = replace_with_synonym(token)
|
101 |
-
rephrased_text.append(synonym)
|
102 |
-
else:
|
103 |
-
rephrased_text.append(token.text)
|
104 |
-
else:
|
105 |
-
rephrased_text.append(token.text)
|
106 |
-
|
107 |
-
return ' '.join(rephrased_text)
|
108 |
-
|
109 |
# Function to remove redundant and meaningless words
|
110 |
def remove_redundant_words(text):
|
111 |
doc = nlp(text)
|
@@ -131,26 +62,12 @@ def capitalize_sentences_and_nouns(text):
|
|
131 |
|
132 |
return ' '.join(corrected_text)
|
133 |
|
134 |
-
# Function to force capitalization of the first letter of every sentence
|
135 |
def force_first_letter_capital(text):
|
136 |
sentences = text.split(". ") # Split by period to get each sentence
|
137 |
capitalized_sentences = [sentence[0].capitalize() + sentence[1:] if sentence else "" for sentence in sentences]
|
138 |
return ". ".join(capitalized_sentences)
|
139 |
|
140 |
-
# Function to handle possessive 's and retain original meaning
|
141 |
-
def handle_possessives(text):
|
142 |
-
doc = nlp(text)
|
143 |
-
corrected_text = []
|
144 |
-
|
145 |
-
for token in doc:
|
146 |
-
# If token is a possessive form (e.g., 'Earth's'), retain its original form
|
147 |
-
if token.text.endswith("'s") or token.text == "'s":
|
148 |
-
corrected_text.append(token.text) # Keep it as is, even if a synonym is found
|
149 |
-
else:
|
150 |
-
corrected_text.append(token.text)
|
151 |
-
|
152 |
-
return ' '.join(corrected_text)
|
153 |
-
|
154 |
# Function to correct tense errors in a sentence
|
155 |
def correct_tense_errors(text):
|
156 |
doc = nlp(text)
|
@@ -202,6 +119,31 @@ def correct_article_errors(text):
|
|
202 |
corrected_text.append(token.text)
|
203 |
return ' '.join(corrected_text)
|
204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
# Function to check for and avoid double negatives
|
206 |
def correct_double_negatives(text):
|
207 |
doc = nlp(text)
|
@@ -226,25 +168,56 @@ def ensure_subject_verb_agreement(text):
|
|
226 |
corrected_text.append(token.text)
|
227 |
return ' '.join(corrected_text)
|
228 |
|
229 |
-
# Function to correct spelling errors
|
230 |
def correct_spelling(text):
|
231 |
words = text.split()
|
232 |
corrected_words = []
|
233 |
for word in words:
|
234 |
corrected_word = spell.correction(word)
|
235 |
-
# If spell.correction returns None, use the original word
|
236 |
-
if corrected_word is None:
|
237 |
-
corrected_word = word
|
238 |
corrected_words.append(corrected_word)
|
239 |
return ' '.join(corrected_words)
|
240 |
|
241 |
-
# Function to
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
def paraphrase_and_correct(text):
|
243 |
-
# Retain the structure (headings, paragraphs, line breaks)
|
244 |
-
structured_text = retain_structure(text)
|
245 |
-
|
246 |
# Remove meaningless or redundant words first
|
247 |
-
cleaned_text = remove_redundant_words(
|
248 |
|
249 |
# Capitalize sentences and nouns
|
250 |
paraphrased_text = capitalize_sentences_and_nouns(cleaned_text)
|
@@ -252,9 +225,6 @@ def paraphrase_and_correct(text):
|
|
252 |
# Ensure first letter of each sentence is capitalized
|
253 |
paraphrased_text = force_first_letter_capital(paraphrased_text)
|
254 |
|
255 |
-
# Handle possessives properly
|
256 |
-
paraphrased_text = handle_possessives(paraphrased_text)
|
257 |
-
|
258 |
# Apply grammatical corrections
|
259 |
paraphrased_text = correct_article_errors(paraphrased_text)
|
260 |
paraphrased_text = correct_singular_plural_errors(paraphrased_text)
|
@@ -262,7 +232,7 @@ def paraphrase_and_correct(text):
|
|
262 |
paraphrased_text = correct_double_negatives(paraphrased_text)
|
263 |
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
|
264 |
|
265 |
-
# Rephrase with
|
266 |
paraphrased_text = rephrase_with_synonyms(paraphrased_text)
|
267 |
|
268 |
# Correct spelling errors
|
|
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet
|
8 |
from spellchecker import SpellChecker
|
|
|
9 |
|
10 |
# Initialize the English text classification pipeline for AI detection
|
11 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
|
|
29 |
res = pipeline_en(text)[0]
|
30 |
return res['label'], res['score']
|
31 |
|
32 |
+
# Function to get synonyms using NLTK WordNet
|
33 |
def get_synonyms_nltk(word, pos):
|
34 |
synsets = wordnet.synsets(word, pos=pos)
|
35 |
if synsets:
|
|
|
37 |
return [lemma.name() for lemma in lemmas]
|
38 |
return []
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
# Function to remove redundant and meaningless words
|
41 |
def remove_redundant_words(text):
|
42 |
doc = nlp(text)
|
|
|
62 |
|
63 |
return ' '.join(corrected_text)
|
64 |
|
65 |
+
# Function to force capitalization of the first letter of every sentence (NEW)
|
66 |
def force_first_letter_capital(text):
|
67 |
sentences = text.split(". ") # Split by period to get each sentence
|
68 |
capitalized_sentences = [sentence[0].capitalize() + sentence[1:] if sentence else "" for sentence in sentences]
|
69 |
return ". ".join(capitalized_sentences)
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
# Function to correct tense errors in a sentence
|
72 |
def correct_tense_errors(text):
|
73 |
doc = nlp(text)
|
|
|
119 |
corrected_text.append(token.text)
|
120 |
return ' '.join(corrected_text)
|
121 |
|
122 |
+
# Function to get the correct synonym while maintaining verb form
|
123 |
+
def replace_with_synonym(token):
|
124 |
+
pos = None
|
125 |
+
if token.pos_ == "VERB":
|
126 |
+
pos = wordnet.VERB
|
127 |
+
elif token.pos_ == "NOUN":
|
128 |
+
pos = wordnet.NOUN
|
129 |
+
elif token.pos_ == "ADJ":
|
130 |
+
pos = wordnet.ADJ
|
131 |
+
elif token.pos_ == "ADV":
|
132 |
+
pos = wordnet.ADV
|
133 |
+
|
134 |
+
synonyms = get_synonyms_nltk(token.lemma_, pos)
|
135 |
+
|
136 |
+
if synonyms:
|
137 |
+
synonym = synonyms[0]
|
138 |
+
if token.tag_ == "VBG": # Present participle (e.g., running)
|
139 |
+
synonym = synonym + 'ing'
|
140 |
+
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
|
141 |
+
synonym = synonym + 'ed'
|
142 |
+
elif token.tag_ == "VBZ": # Third-person singular present
|
143 |
+
synonym = synonym + 's'
|
144 |
+
return synonym
|
145 |
+
return token.text
|
146 |
+
|
147 |
# Function to check for and avoid double negatives
|
148 |
def correct_double_negatives(text):
|
149 |
doc = nlp(text)
|
|
|
168 |
corrected_text.append(token.text)
|
169 |
return ' '.join(corrected_text)
|
170 |
|
171 |
+
# Function to correct spelling errors
|
172 |
def correct_spelling(text):
|
173 |
words = text.split()
|
174 |
corrected_words = []
|
175 |
for word in words:
|
176 |
corrected_word = spell.correction(word)
|
|
|
|
|
|
|
177 |
corrected_words.append(corrected_word)
|
178 |
return ' '.join(corrected_words)
|
179 |
|
180 |
+
# Function to rephrase text and replace words with their synonyms while maintaining form
|
181 |
+
def rephrase_with_synonyms(text):
|
182 |
+
doc = nlp(text)
|
183 |
+
rephrased_text = []
|
184 |
+
|
185 |
+
for token in doc:
|
186 |
+
pos_tag = None
|
187 |
+
if token.pos_ == "NOUN":
|
188 |
+
pos_tag = wordnet.NOUN
|
189 |
+
elif token.pos_ == "VERB":
|
190 |
+
pos_tag = wordnet.VERB
|
191 |
+
elif token.pos_ == "ADJ":
|
192 |
+
pos_tag = wordnet.ADJ
|
193 |
+
elif token.pos_ == "ADV":
|
194 |
+
pos_tag = wordnet.ADV
|
195 |
+
|
196 |
+
if pos_tag:
|
197 |
+
synonyms = get_synonyms_nltk(token.text, pos_tag)
|
198 |
+
if synonyms:
|
199 |
+
synonym = synonyms[0] # Just using the first synonym for simplicity
|
200 |
+
if token.pos_ == "VERB":
|
201 |
+
if token.tag_ == "VBG": # Present participle (e.g., running)
|
202 |
+
synonym = synonym + 'ing'
|
203 |
+
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
|
204 |
+
synonym = synonym + 'ed'
|
205 |
+
elif token.tag_ == "VBZ": # Third-person singular present
|
206 |
+
synonym = synonym + 's'
|
207 |
+
elif token.pos_ == "NOUN" and token.tag_ == "NNS": # Plural nouns
|
208 |
+
synonym += 's' if not synonym.endswith('s') else ""
|
209 |
+
rephrased_text.append(synonym)
|
210 |
+
else:
|
211 |
+
rephrased_text.append(token.text)
|
212 |
+
else:
|
213 |
+
rephrased_text.append(token.text)
|
214 |
+
|
215 |
+
return ' '.join(rephrased_text)
|
216 |
+
|
217 |
+
# Function to paraphrase and correct grammar with enhanced accuracy
|
218 |
def paraphrase_and_correct(text):
|
|
|
|
|
|
|
219 |
# Remove meaningless or redundant words first
|
220 |
+
cleaned_text = remove_redundant_words(text)
|
221 |
|
222 |
# Capitalize sentences and nouns
|
223 |
paraphrased_text = capitalize_sentences_and_nouns(cleaned_text)
|
|
|
225 |
# Ensure first letter of each sentence is capitalized
|
226 |
paraphrased_text = force_first_letter_capital(paraphrased_text)
|
227 |
|
|
|
|
|
|
|
228 |
# Apply grammatical corrections
|
229 |
paraphrased_text = correct_article_errors(paraphrased_text)
|
230 |
paraphrased_text = correct_singular_plural_errors(paraphrased_text)
|
|
|
232 |
paraphrased_text = correct_double_negatives(paraphrased_text)
|
233 |
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
|
234 |
|
235 |
+
# Rephrase with synonyms while maintaining grammatical forms
|
236 |
paraphrased_text = rephrase_with_synonyms(paraphrased_text)
|
237 |
|
238 |
# Correct spelling errors
|