ali commited on
Commit
c93f011
·
verified ·
1 Parent(s): f5d5ec5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -4
app.py CHANGED
@@ -10,17 +10,20 @@ import string
10
  nltk.download('punkt')
11
  nltk.download('stopwords')
12
 
 
 
 
13
  # Load AI Detector model and tokenizer from Hugging Face (DistilBERT)
14
  tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
15
- model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
16
 
17
  # Load SRDdev Paraphrase model and tokenizer for humanizing text
18
  paraphrase_tokenizer = T5Tokenizer.from_pretrained("SRDdev/Paraphrase")
19
- paraphrase_model = T5ForConditionalGeneration.from_pretrained("SRDdev/Paraphrase")
20
 
21
  # AI detection function using DistilBERT
22
  def detect_ai_generated(text):
23
- inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
24
  with torch.no_grad():
25
  outputs = model(**inputs)
26
  probabilities = torch.softmax(outputs.logits, dim=1)
@@ -98,7 +101,7 @@ def humanize_text(AI_text):
98
  paraphrased_paragraphs = []
99
  for paragraph in paragraphs:
100
  if paragraph.strip():
101
- inputs = paraphrase_tokenizer(paragraph, return_tensors="pt", max_length=512, truncation=True)
102
  paraphrased_ids = paraphrase_model.generate(
103
  inputs['input_ids'],
104
  max_length=inputs['input_ids'].shape[-1] + 20, # Slightly more than the original input length
 
10
  nltk.download('punkt')
11
  nltk.download('stopwords')
12
 
13
+ # Check for GPU and set the device accordingly
14
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
15
+
16
  # Load AI Detector model and tokenizer from Hugging Face (DistilBERT)
17
  tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
18
+ model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device)
19
 
20
  # Load SRDdev Paraphrase model and tokenizer for humanizing text
21
  paraphrase_tokenizer = T5Tokenizer.from_pretrained("SRDdev/Paraphrase")
22
+ paraphrase_model = T5ForConditionalGeneration.from_pretrained("SRDdev/Paraphrase").to(device)
23
 
24
  # AI detection function using DistilBERT
25
  def detect_ai_generated(text):
26
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
27
  with torch.no_grad():
28
  outputs = model(**inputs)
29
  probabilities = torch.softmax(outputs.logits, dim=1)
 
101
  paraphrased_paragraphs = []
102
  for paragraph in paragraphs:
103
  if paragraph.strip():
104
+ inputs = paraphrase_tokenizer(paragraph, return_tensors="pt", max_length=512, truncation=True).to(device)
105
  paraphrased_ids = paraphrase_model.generate(
106
  inputs['input_ids'],
107
  max_length=inputs['input_ids'].shape[-1] + 20, # Slightly more than the original input length