Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -9,11 +9,6 @@ from nltk.corpus import wordnet
|
|
9 |
# Initialize the English text classification pipeline for AI detection
|
10 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
11 |
|
12 |
-
# Function to predict the label and score for English text (AI Detection)
|
13 |
-
def predict_en(text):
|
14 |
-
res = pipeline_en(text)[0]
|
15 |
-
return res['label'], res['score']
|
16 |
-
|
17 |
# Ensure necessary NLTK data is downloaded for Humanifier
|
18 |
nltk.download('wordnet')
|
19 |
nltk.download('omw-1.4')
|
@@ -25,64 +20,35 @@ except OSError:
|
|
25 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
26 |
nlp = spacy.load("en_core_web_sm")
|
27 |
|
28 |
-
# Function to
|
29 |
-
def
|
30 |
-
synsets = wordnet.synsets(word, pos=pos)
|
31 |
-
if synsets:
|
32 |
-
lemmas = synsets[0].lemmas()
|
33 |
-
return [lemma.name().replace('_', ' ') for lemma in lemmas]
|
34 |
-
return []
|
35 |
-
|
36 |
-
# Function to capitalize the first letter of sentences and proper nouns (Humanifier)
|
37 |
-
def capitalize_sentences_and_nouns(text):
|
38 |
-
doc = nlp(text)
|
39 |
-
corrected_text = []
|
40 |
-
|
41 |
-
for sent in doc.sents:
|
42 |
-
sentence = []
|
43 |
-
for token in sent:
|
44 |
-
if token.i == sent.start: # First word of the sentence
|
45 |
-
sentence.append(token.text.capitalize())
|
46 |
-
elif token.pos_ == "PROPN": # Proper noun
|
47 |
-
sentence.append(token.text.capitalize())
|
48 |
-
else:
|
49 |
-
sentence.append(token.text)
|
50 |
-
corrected_text.append(' '.join(sentence))
|
51 |
-
|
52 |
-
return ' '.join(corrected_text)
|
53 |
-
|
54 |
-
# Function to correct tense errors in a sentence (Tense Correction)
|
55 |
-
def correct_tense_errors(text):
|
56 |
-
doc = nlp(text)
|
57 |
corrected_text = []
|
58 |
-
|
59 |
for token in doc:
|
60 |
-
if token.
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
return ' '.join(corrected_text)
|
67 |
|
68 |
-
# Function to correct singular/plural errors
|
69 |
-
def correct_singular_plural_errors(
|
70 |
-
doc = nlp(text)
|
71 |
corrected_text = []
|
72 |
|
73 |
for token in doc:
|
74 |
if token.pos_ == "NOUN":
|
75 |
-
if token.tag_ == "NN"
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
corrected_text.append(token.text)
|
80 |
-
elif token.tag_ == "NNS": # Plural noun
|
81 |
-
if any(child.text.lower() in {'a', 'one'} for child in token.head.children):
|
82 |
-
singular = token.lemma_
|
83 |
-
corrected_text.append(singular)
|
84 |
-
else:
|
85 |
-
corrected_text.append(token.text)
|
86 |
else:
|
87 |
corrected_text.append(token.text)
|
88 |
else:
|
@@ -90,70 +56,54 @@ def correct_singular_plural_errors(text):
|
|
90 |
|
91 |
return ' '.join(corrected_text)
|
92 |
|
93 |
-
# Function to check and correct article errors
|
94 |
-
def correct_article_errors(text):
|
95 |
-
doc = nlp(text)
|
96 |
-
corrected_text = []
|
97 |
-
tokens = list(doc)
|
98 |
-
|
99 |
-
for i, token in enumerate(tokens):
|
100 |
-
if token.text.lower() in {'a', 'an'}:
|
101 |
-
if i + 1 < len(tokens):
|
102 |
-
next_token = tokens[i + 1]
|
103 |
-
if next_token.text[0].lower() in 'aeiou':
|
104 |
-
corrected_text.append('an')
|
105 |
-
else:
|
106 |
-
corrected_text.append('a')
|
107 |
-
else:
|
108 |
-
corrected_text.append(token.text)
|
109 |
-
else:
|
110 |
-
corrected_text.append(token.text)
|
111 |
-
return ' '.join(corrected_text)
|
112 |
-
|
113 |
# Paraphrasing function using SpaCy and NLTK (Humanifier)
|
114 |
def paraphrase_with_spacy_nltk(text):
|
115 |
doc = nlp(text)
|
116 |
paraphrased_words = []
|
117 |
|
118 |
for token in doc:
|
|
|
119 |
pos = None
|
120 |
-
if token.pos_
|
121 |
pos = wordnet.NOUN
|
122 |
-
elif token.pos_
|
123 |
pos = wordnet.VERB
|
124 |
-
elif token.pos_
|
125 |
pos = wordnet.ADJ
|
126 |
-
elif token.pos_
|
127 |
pos = wordnet.ADV
|
128 |
|
129 |
synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else []
|
130 |
|
131 |
-
# Replace with a synonym only if it
|
132 |
-
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"}:
|
133 |
-
|
134 |
-
synonym = synonyms[0]
|
135 |
-
if synonym != token.text.lower() and len(synonym.split()) == 1:
|
136 |
-
paraphrased_words.append(synonym)
|
137 |
-
else:
|
138 |
-
paraphrased_words.append(token.text)
|
139 |
else:
|
140 |
paraphrased_words.append(token.text)
|
141 |
|
142 |
-
|
143 |
-
return paraphrased_sentence
|
144 |
|
145 |
# Combined function: Paraphrase -> Grammar Correction -> Capitalization (Humanifier)
|
146 |
def paraphrase_and_correct(text):
|
147 |
# Step 1: Paraphrase the text
|
148 |
paraphrased_text = paraphrase_with_spacy_nltk(text)
|
149 |
|
150 |
-
# Step 2:
|
151 |
-
|
|
|
|
|
|
|
|
|
152 |
corrected_text = capitalize_sentences_and_nouns(corrected_text)
|
153 |
-
corrected_text = correct_singular_plural_errors(corrected_text)
|
154 |
-
corrected_text = correct_tense_errors(corrected_text)
|
155 |
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
# Gradio app setup with two tabs
|
159 |
with gr.Blocks() as demo:
|
@@ -161,16 +111,16 @@ with gr.Blocks() as demo:
|
|
161 |
t1 = gr.Textbox(lines=5, label='Text')
|
162 |
button1 = gr.Button("🤖 Predict!")
|
163 |
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
|
164 |
-
score1 = gr.Textbox(lines=1, label='
|
165 |
-
|
166 |
# Connect the prediction function to the button
|
167 |
button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en')
|
168 |
|
169 |
with gr.Tab("Humanifier"):
|
170 |
-
text_input = gr.Textbox(lines=
|
171 |
paraphrase_button = gr.Button("Paraphrase & Correct")
|
172 |
output_text = gr.Textbox(label="Paraphrased Text")
|
173 |
-
|
174 |
# Connect the paraphrasing function to the button
|
175 |
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
|
176 |
|
|
|
9 |
# Initialize the English text classification pipeline for AI detection
|
10 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
11 |
|
|
|
|
|
|
|
|
|
|
|
12 |
# Ensure necessary NLTK data is downloaded for Humanifier
|
13 |
nltk.download('wordnet')
|
14 |
nltk.download('omw-1.4')
|
|
|
20 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
21 |
nlp = spacy.load("en_core_web_sm")
|
22 |
|
23 |
+
# Function to check subject-verb agreement
|
24 |
+
def check_subject_verb_agreement(doc):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
corrected_text = []
|
|
|
26 |
for token in doc:
|
27 |
+
if token.dep_ == "nsubj": # Check if the token is a subject
|
28 |
+
subject = token
|
29 |
+
verb = token.head # Find the associated verb
|
30 |
+
if verb.tag_ in {"VBZ", "VBP"}: # Singular/plural verb forms
|
31 |
+
if subject.tag_ == "NNS" and verb.tag_ == "VBZ": # Plural subject with singular verb
|
32 |
+
corrected_text.append(verb.lemma_) # Convert verb to plural form
|
33 |
+
elif subject.tag_ == "NN" and verb.tag_ == "VBP": # Singular subject with plural verb
|
34 |
+
corrected_text.append(verb.lemma_ + 's') # Convert verb to singular form
|
35 |
+
else:
|
36 |
+
corrected_text.append(verb.text) # No correction needed
|
37 |
+
else:
|
38 |
+
corrected_text.append(verb.text)
|
39 |
+
corrected_text.append(token.text)
|
40 |
return ' '.join(corrected_text)
|
41 |
|
42 |
+
# Function to correct singular/plural errors using dependency parsing
|
43 |
+
def correct_singular_plural_errors(doc):
|
|
|
44 |
corrected_text = []
|
45 |
|
46 |
for token in doc:
|
47 |
if token.pos_ == "NOUN":
|
48 |
+
if token.tag_ == "NN" and token.head.pos_ == "VERB" and token.head.tag_ == "VBP":
|
49 |
+
corrected_text.append(token.lemma_ + 's') # Singular noun, plural verb
|
50 |
+
elif token.tag_ == "NNS" and token.head.pos_ == "VERB" and token.head.tag_ == "VBZ":
|
51 |
+
corrected_text.append(token.lemma_) # Plural noun, singular verb
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
else:
|
53 |
corrected_text.append(token.text)
|
54 |
else:
|
|
|
56 |
|
57 |
return ' '.join(corrected_text)
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
# Paraphrasing function using SpaCy and NLTK (Humanifier)
|
60 |
def paraphrase_with_spacy_nltk(text):
|
61 |
doc = nlp(text)
|
62 |
paraphrased_words = []
|
63 |
|
64 |
for token in doc:
|
65 |
+
# Map SpaCy POS tags to WordNet POS tags
|
66 |
pos = None
|
67 |
+
if token.pos_ in {"NOUN"}:
|
68 |
pos = wordnet.NOUN
|
69 |
+
elif token.pos_ in {"VERB"}:
|
70 |
pos = wordnet.VERB
|
71 |
+
elif token.pos_ in {"ADJ"}:
|
72 |
pos = wordnet.ADJ
|
73 |
+
elif token.pos_ in {"ADV"}:
|
74 |
pos = wordnet.ADV
|
75 |
|
76 |
synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else []
|
77 |
|
78 |
+
# Replace with a synonym only if it makes sense
|
79 |
+
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower():
|
80 |
+
paraphrased_words.append(synonyms[0])
|
|
|
|
|
|
|
|
|
|
|
81 |
else:
|
82 |
paraphrased_words.append(token.text)
|
83 |
|
84 |
+
return ' '.join(paraphrased_words)
|
|
|
85 |
|
86 |
# Combined function: Paraphrase -> Grammar Correction -> Capitalization (Humanifier)
|
87 |
def paraphrase_and_correct(text):
|
88 |
# Step 1: Paraphrase the text
|
89 |
paraphrased_text = paraphrase_with_spacy_nltk(text)
|
90 |
|
91 |
+
# Step 2: Parse the text with spaCy
|
92 |
+
doc = nlp(paraphrased_text)
|
93 |
+
|
94 |
+
# Step 3: Apply grammatical corrections on the paraphrased text
|
95 |
+
corrected_text = correct_article_errors(doc)
|
96 |
+
|
97 |
corrected_text = capitalize_sentences_and_nouns(corrected_text)
|
|
|
|
|
98 |
|
99 |
+
corrected_text = check_subject_verb_agreement(nlp(corrected_text))
|
100 |
+
|
101 |
+
corrected_text = correct_singular_plural_errors(nlp(corrected_text))
|
102 |
+
|
103 |
+
# Step 4: Capitalize sentences and proper nouns (final correction step)
|
104 |
+
final_text = correct_tense_errors(nlp(corrected_text))
|
105 |
+
|
106 |
+
return final_text
|
107 |
|
108 |
# Gradio app setup with two tabs
|
109 |
with gr.Blocks() as demo:
|
|
|
111 |
t1 = gr.Textbox(lines=5, label='Text')
|
112 |
button1 = gr.Button("🤖 Predict!")
|
113 |
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
|
114 |
+
score1 = gr.Textbox(lines=1, label='Prob')
|
115 |
+
|
116 |
# Connect the prediction function to the button
|
117 |
button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en')
|
118 |
|
119 |
with gr.Tab("Humanifier"):
|
120 |
+
text_input = gr.Textbox(lines=5, label="Input Text")
|
121 |
paraphrase_button = gr.Button("Paraphrase & Correct")
|
122 |
output_text = gr.Textbox(label="Paraphrased Text")
|
123 |
+
|
124 |
# Connect the paraphrasing function to the button
|
125 |
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
|
126 |
|