Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,14 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
from transformers import pipeline
|
4 |
import spacy
|
5 |
import subprocess
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet
|
8 |
from spellchecker import SpellChecker
|
9 |
-
from flask import Flask, jsonify, request
|
10 |
|
11 |
-
# Initialize
|
12 |
-
app =
|
13 |
|
14 |
# Initialize the English text classification pipeline for AI detection
|
15 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
@@ -28,83 +27,97 @@ except OSError:
|
|
28 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
29 |
nlp = spacy.load("en_core_web_sm")
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
# Function to predict the label and score for English text (AI Detection)
|
32 |
-
def predict_en(text):
|
33 |
res = pipeline_en(text)[0]
|
34 |
-
return res['label'], res['score']
|
35 |
-
|
36 |
-
#
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
paraphrased_text = correct_double_negatives(paraphrased_text)
|
48 |
-
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
|
49 |
-
paraphrased_text = rephrase_with_synonyms(paraphrased_text)
|
50 |
-
paraphrased_text = correct_spelling(paraphrased_text)
|
51 |
-
|
52 |
-
return paraphrased_text
|
53 |
-
|
54 |
-
# API Endpoint for AI Detection
|
55 |
-
@app.route('/api/ai-detection', methods=['POST'])
|
56 |
-
def ai_detection():
|
57 |
-
data = request.get_json()
|
58 |
-
text = data.get('text', '')
|
59 |
-
|
60 |
-
if text:
|
61 |
-
label, score = predict_en(text)
|
62 |
-
return jsonify({"label": label, "score": score})
|
63 |
-
else:
|
64 |
-
return jsonify({"error": "No text provided"}), 400
|
65 |
-
|
66 |
-
# API Endpoint for Paraphrasing and Grammar Correction
|
67 |
-
@app.route('/api/paraphrase-correct', methods=['POST'])
|
68 |
-
def paraphrase_and_correct_api():
|
69 |
-
data = request.get_json()
|
70 |
-
text = data.get('text', '')
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
#
|
79 |
-
def
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
from transformers import pipeline
|
4 |
import spacy
|
5 |
import subprocess
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet
|
8 |
from spellchecker import SpellChecker
|
|
|
9 |
|
10 |
+
# Initialize FastAPI app
|
11 |
+
app = FastAPI()
|
12 |
|
13 |
# Initialize the English text classification pipeline for AI detection
|
14 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
|
|
27 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
28 |
nlp = spacy.load("en_core_web_sm")
|
29 |
|
30 |
+
# Request body models
|
31 |
+
class TextRequest(BaseModel):
|
32 |
+
text: str
|
33 |
+
|
34 |
+
class TextResponse(BaseModel):
|
35 |
+
result: str
|
36 |
+
|
37 |
# Function to predict the label and score for English text (AI Detection)
|
38 |
+
def predict_en(text: str):
|
39 |
res = pipeline_en(text)[0]
|
40 |
+
return {"label": res['label'], "score": res['score']}
|
41 |
+
|
42 |
+
# Function to get synonyms using NLTK WordNet
|
43 |
+
def get_synonyms_nltk(word: str, pos: str):
|
44 |
+
pos_tag = None
|
45 |
+
if pos == "VERB":
|
46 |
+
pos_tag = wordnet.VERB
|
47 |
+
elif pos == "NOUN":
|
48 |
+
pos_tag = wordnet.NOUN
|
49 |
+
elif pos == "ADJ":
|
50 |
+
pos_tag = wordnet.ADJ
|
51 |
+
elif pos == "ADV":
|
52 |
+
pos_tag = wordnet.ADV
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
synsets = wordnet.synsets(word, pos=pos_tag)
|
55 |
+
if synsets:
|
56 |
+
lemmas = synsets[0].lemmas()
|
57 |
+
return [lemma.name() for lemma in lemmas]
|
58 |
+
return []
|
59 |
+
|
60 |
+
# Function to correct spelling errors
|
61 |
+
def correct_spelling(text: str):
|
62 |
+
words = text.split()
|
63 |
+
corrected_words = []
|
64 |
+
for word in words:
|
65 |
+
corrected_word = spell.correction(word)
|
66 |
+
corrected_words.append(corrected_word)
|
67 |
+
return ' '.join(corrected_words)
|
68 |
+
|
69 |
+
# Function to rephrase text and replace words with their synonyms while maintaining form
|
70 |
+
def rephrase_with_synonyms(text: str):
|
71 |
+
doc = nlp(text)
|
72 |
+
rephrased_text = []
|
73 |
+
|
74 |
+
for token in doc:
|
75 |
+
pos_tag = None
|
76 |
+
if token.pos_ == "NOUN":
|
77 |
+
pos_tag = "NOUN"
|
78 |
+
elif token.pos_ == "VERB":
|
79 |
+
pos_tag = "VERB"
|
80 |
+
elif token.pos_ == "ADJ":
|
81 |
+
pos_tag = "ADJ"
|
82 |
+
elif token.pos_ == "ADV":
|
83 |
+
pos_tag = "ADV"
|
84 |
+
|
85 |
+
if pos_tag:
|
86 |
+
synonyms = get_synonyms_nltk(token.text, pos_tag)
|
87 |
+
if synonyms:
|
88 |
+
synonym = synonyms[0] # Just using the first synonym for simplicity
|
89 |
+
if token.pos_ == "VERB":
|
90 |
+
if token.tag_ == "VBG": # Present participle (e.g., running)
|
91 |
+
synonym = synonym + 'ing'
|
92 |
+
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
|
93 |
+
synonym = synonym + 'ed'
|
94 |
+
elif token.tag_ == "VBZ": # Third-person singular present
|
95 |
+
synonym = synonym + 's'
|
96 |
+
elif token.pos_ == "NOUN" and token.tag_ == "NNS": # Plural nouns
|
97 |
+
synonym += 's' if not synonym.endswith('s') else ""
|
98 |
+
rephrased_text.append(synonym)
|
99 |
+
else:
|
100 |
+
rephrased_text.append(token.text)
|
101 |
+
else:
|
102 |
+
rephrased_text.append(token.text)
|
103 |
+
|
104 |
+
return ' '.join(rephrased_text)
|
105 |
+
|
106 |
+
# FastAPI endpoints
|
107 |
+
@app.post("/predict/")
|
108 |
+
def predict(text_request: TextRequest):
|
109 |
+
return predict_en(text_request.text)
|
110 |
+
|
111 |
+
@app.post("/rephrase/")
|
112 |
+
def rephrase(text_request: TextRequest):
|
113 |
+
return {"result": rephrase_with_synonyms(text_request.text)}
|
114 |
+
|
115 |
+
@app.post("/correct-spelling/")
|
116 |
+
def correct_spell(text_request: TextRequest):
|
117 |
+
return {"result": correct_spelling(text_request.text)}
|
118 |
+
|
119 |
+
# Additional endpoints for other functionalities can be added similarly
|
120 |
+
|
121 |
+
if __name__ == "__main__":
|
122 |
+
import uvicorn
|
123 |
+
uvicorn.run(app, host="127.0.0.1", port=8000)
|