sashtech commited on
Commit
e0913e2
·
verified ·
1 Parent(s): eda69d8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +95 -82
app.py CHANGED
@@ -1,15 +1,14 @@
1
- import os
2
- import gradio as gr
3
  from transformers import pipeline
4
  import spacy
5
  import subprocess
6
  import nltk
7
  from nltk.corpus import wordnet
8
  from spellchecker import SpellChecker
9
- from flask import Flask, jsonify, request
10
 
11
- # Initialize Flask app
12
- app = Flask(__name__)
13
 
14
  # Initialize the English text classification pipeline for AI detection
15
  pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
@@ -28,83 +27,97 @@ except OSError:
28
  subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
29
  nlp = spacy.load("en_core_web_sm")
30
 
 
 
 
 
 
 
 
31
  # Function to predict the label and score for English text (AI Detection)
32
- def predict_en(text):
33
  res = pipeline_en(text)[0]
34
- return res['label'], res['score']
35
-
36
- # Other processing functions (remove redundant words, capitalization, etc.) as previously defined
37
- # For brevity, I'm skipping them here since they're unchanged. Make sure to include all the defined functions from the original code.
38
-
39
- # Function to paraphrase and correct grammar with enhanced accuracy
40
- def paraphrase_and_correct(text):
41
- cleaned_text = remove_redundant_words(text)
42
- paraphrased_text = capitalize_sentences_and_nouns(cleaned_text)
43
- paraphrased_text = force_first_letter_capital(paraphrased_text)
44
- paraphrased_text = correct_article_errors(paraphrased_text)
45
- paraphrased_text = correct_singular_plural_errors(paraphrased_text)
46
- paraphrased_text = correct_tense_errors(paraphrased_text)
47
- paraphrased_text = correct_double_negatives(paraphrased_text)
48
- paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
49
- paraphrased_text = rephrase_with_synonyms(paraphrased_text)
50
- paraphrased_text = correct_spelling(paraphrased_text)
51
-
52
- return paraphrased_text
53
-
54
- # API Endpoint for AI Detection
55
- @app.route('/api/ai-detection', methods=['POST'])
56
- def ai_detection():
57
- data = request.get_json()
58
- text = data.get('text', '')
59
-
60
- if text:
61
- label, score = predict_en(text)
62
- return jsonify({"label": label, "score": score})
63
- else:
64
- return jsonify({"error": "No text provided"}), 400
65
-
66
- # API Endpoint for Paraphrasing and Grammar Correction
67
- @app.route('/api/paraphrase-correct', methods=['POST'])
68
- def paraphrase_and_correct_api():
69
- data = request.get_json()
70
- text = data.get('text', '')
71
 
72
- if text:
73
- corrected_text = paraphrase_and_correct(text)
74
- return jsonify({"corrected_text": corrected_text})
75
- else:
76
- return jsonify({"error": "No text provided"}), 400
77
-
78
- # Gradio app setup with two tabs
79
- def launch_gradio():
80
- with gr.Blocks() as demo:
81
- with gr.Tab("AI Detection"):
82
- t1 = gr.Textbox(lines=5, label='Text')
83
- button1 = gr.Button("🤖 Predict!")
84
- label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
85
- score1 = gr.Textbox(lines=1, label='Prob')
86
-
87
- # Connect the prediction function to the button
88
- button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1])
89
-
90
- with gr.Tab("Paraphrasing & Grammar Correction"):
91
- t2 = gr.Textbox(lines=5, label='Enter text for paraphrasing and grammar correction')
92
- button2 = gr.Button("🔄 Paraphrase and Correct")
93
- result2 = gr.Textbox(lines=10, label='Corrected Text', placeholder="The corrected text will appear here...")
94
-
95
- # Connect the paraphrasing and correction function to the button
96
- button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2)
97
-
98
- demo.launch(share=True) # Share=True to create a public link
99
-
100
- # Launch Gradio interface in a separate thread
101
- if __name__ == '__main__':
102
- # Run Flask app in one thread and Gradio in another
103
- from threading import Thread
104
-
105
- # Gradio interface
106
- gradio_thread = Thread(target=launch_gradio)
107
- gradio_thread.start()
108
-
109
- # Flask API
110
- app.run(debug=True, port=5000)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, HTTPException
2
+ from pydantic import BaseModel
3
  from transformers import pipeline
4
  import spacy
5
  import subprocess
6
  import nltk
7
  from nltk.corpus import wordnet
8
  from spellchecker import SpellChecker
 
9
 
10
+ # Initialize FastAPI app
11
+ app = FastAPI()
12
 
13
  # Initialize the English text classification pipeline for AI detection
14
  pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
 
27
  subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
28
  nlp = spacy.load("en_core_web_sm")
29
 
30
+ # Request body models
31
+ class TextRequest(BaseModel):
32
+ text: str
33
+
34
+ class TextResponse(BaseModel):
35
+ result: str
36
+
37
  # Function to predict the label and score for English text (AI Detection)
38
+ def predict_en(text: str):
39
  res = pipeline_en(text)[0]
40
+ return {"label": res['label'], "score": res['score']}
41
+
42
+ # Function to get synonyms using NLTK WordNet
43
+ def get_synonyms_nltk(word: str, pos: str):
44
+ pos_tag = None
45
+ if pos == "VERB":
46
+ pos_tag = wordnet.VERB
47
+ elif pos == "NOUN":
48
+ pos_tag = wordnet.NOUN
49
+ elif pos == "ADJ":
50
+ pos_tag = wordnet.ADJ
51
+ elif pos == "ADV":
52
+ pos_tag = wordnet.ADV
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
 
54
+ synsets = wordnet.synsets(word, pos=pos_tag)
55
+ if synsets:
56
+ lemmas = synsets[0].lemmas()
57
+ return [lemma.name() for lemma in lemmas]
58
+ return []
59
+
60
+ # Function to correct spelling errors
61
+ def correct_spelling(text: str):
62
+ words = text.split()
63
+ corrected_words = []
64
+ for word in words:
65
+ corrected_word = spell.correction(word)
66
+ corrected_words.append(corrected_word)
67
+ return ' '.join(corrected_words)
68
+
69
+ # Function to rephrase text and replace words with their synonyms while maintaining form
70
+ def rephrase_with_synonyms(text: str):
71
+ doc = nlp(text)
72
+ rephrased_text = []
73
+
74
+ for token in doc:
75
+ pos_tag = None
76
+ if token.pos_ == "NOUN":
77
+ pos_tag = "NOUN"
78
+ elif token.pos_ == "VERB":
79
+ pos_tag = "VERB"
80
+ elif token.pos_ == "ADJ":
81
+ pos_tag = "ADJ"
82
+ elif token.pos_ == "ADV":
83
+ pos_tag = "ADV"
84
+
85
+ if pos_tag:
86
+ synonyms = get_synonyms_nltk(token.text, pos_tag)
87
+ if synonyms:
88
+ synonym = synonyms[0] # Just using the first synonym for simplicity
89
+ if token.pos_ == "VERB":
90
+ if token.tag_ == "VBG": # Present participle (e.g., running)
91
+ synonym = synonym + 'ing'
92
+ elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
93
+ synonym = synonym + 'ed'
94
+ elif token.tag_ == "VBZ": # Third-person singular present
95
+ synonym = synonym + 's'
96
+ elif token.pos_ == "NOUN" and token.tag_ == "NNS": # Plural nouns
97
+ synonym += 's' if not synonym.endswith('s') else ""
98
+ rephrased_text.append(synonym)
99
+ else:
100
+ rephrased_text.append(token.text)
101
+ else:
102
+ rephrased_text.append(token.text)
103
+
104
+ return ' '.join(rephrased_text)
105
+
106
+ # FastAPI endpoints
107
+ @app.post("/predict/")
108
+ def predict(text_request: TextRequest):
109
+ return predict_en(text_request.text)
110
+
111
+ @app.post("/rephrase/")
112
+ def rephrase(text_request: TextRequest):
113
+ return {"result": rephrase_with_synonyms(text_request.text)}
114
+
115
+ @app.post("/correct-spelling/")
116
+ def correct_spell(text_request: TextRequest):
117
+ return {"result": correct_spelling(text_request.text)}
118
+
119
+ # Additional endpoints for other functionalities can be added similarly
120
+
121
+ if __name__ == "__main__":
122
+ import uvicorn
123
+ uvicorn.run(app, host="127.0.0.1", port=8000)