Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,55 +6,32 @@ import subprocess
|
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet
|
8 |
|
9 |
-
#
|
10 |
-
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
11 |
-
|
12 |
-
# Ensure necessary NLTK data is downloaded for Humanifier
|
13 |
nltk.download('wordnet')
|
14 |
nltk.download('omw-1.4')
|
15 |
|
16 |
-
# Ensure the SpaCy model is installed
|
17 |
try:
|
18 |
nlp = spacy.load("en_core_web_sm")
|
19 |
except OSError:
|
20 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
21 |
nlp = spacy.load("en_core_web_sm")
|
22 |
|
23 |
-
#
|
24 |
-
|
25 |
-
corrected_text = []
|
26 |
-
for token in doc:
|
27 |
-
if token.dep_ == "nsubj": # Check if the token is a subject
|
28 |
-
subject = token
|
29 |
-
verb = token.head # Find the associated verb
|
30 |
-
if verb.tag_ in {"VBZ", "VBP"}: # Singular/plural verb forms
|
31 |
-
if subject.tag_ == "NNS" and verb.tag_ == "VBZ": # Plural subject with singular verb
|
32 |
-
corrected_text.append(verb.lemma_) # Convert verb to plural form
|
33 |
-
elif subject.tag_ == "NN" and verb.tag_ == "VBP": # Singular subject with plural verb
|
34 |
-
corrected_text.append(verb.lemma_ + 's') # Convert verb to singular form
|
35 |
-
else:
|
36 |
-
corrected_text.append(verb.text) # No correction needed
|
37 |
-
else:
|
38 |
-
corrected_text.append(verb.text)
|
39 |
-
corrected_text.append(token.text)
|
40 |
-
return ' '.join(corrected_text)
|
41 |
|
42 |
-
# Function to
|
43 |
-
def
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
else:
|
55 |
-
corrected_text.append(token.text)
|
56 |
-
|
57 |
-
return ' '.join(corrected_text)
|
58 |
|
59 |
# Paraphrasing function using SpaCy and NLTK (Humanifier)
|
60 |
def paraphrase_with_spacy_nltk(text):
|
@@ -81,34 +58,20 @@ def paraphrase_with_spacy_nltk(text):
|
|
81 |
else:
|
82 |
paraphrased_words.append(token.text)
|
83 |
|
84 |
-
|
|
|
|
|
|
|
85 |
|
86 |
# Combined function: Paraphrase -> Grammar Correction -> Capitalization (Humanifier)
|
87 |
def paraphrase_and_correct(text):
|
88 |
# Step 1: Paraphrase the text
|
89 |
paraphrased_text = paraphrase_with_spacy_nltk(text)
|
90 |
|
91 |
-
#
|
92 |
-
|
93 |
-
|
94 |
-
# Step 3: Apply grammatical corrections on the paraphrased text
|
95 |
-
corrected_text = correct_article_errors(doc)
|
96 |
-
|
97 |
-
corrected_text = capitalize_sentences_and_nouns(corrected_text)
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
corrected_text = correct_singular_plural_errors(nlp(corrected_text))
|
102 |
-
|
103 |
-
# Step 4: Capitalize sentences and proper nouns (final correction step)
|
104 |
-
final_text = correct_tense_errors(nlp(corrected_text))
|
105 |
-
|
106 |
-
return final_text
|
107 |
-
def predict_en(text):
|
108 |
-
prediction = pipeline_en(text)
|
109 |
-
label = prediction[0]['label']
|
110 |
-
score = prediction[0]['score']
|
111 |
-
return label, round(score, 4)
|
112 |
|
113 |
# Gradio app setup with two tabs
|
114 |
with gr.Blocks() as demo:
|
@@ -130,4 +93,4 @@ with gr.Blocks() as demo:
|
|
130 |
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
|
131 |
|
132 |
# Launch the app with the remaining functionalities
|
133 |
-
demo.launch()
|
|
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet
|
8 |
|
9 |
+
# Ensure necessary NLTK data is downloaded
|
|
|
|
|
|
|
10 |
nltk.download('wordnet')
|
11 |
nltk.download('omw-1.4')
|
12 |
|
13 |
+
# Ensure the SpaCy model is installed
|
14 |
try:
|
15 |
nlp = spacy.load("en_core_web_sm")
|
16 |
except OSError:
|
17 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
18 |
nlp = spacy.load("en_core_web_sm")
|
19 |
|
20 |
+
# Initialize the English text classification pipeline for AI detection
|
21 |
+
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
# Function to predict the label and score for English text (AI Detection)
|
24 |
+
def predict_en(text):
|
25 |
+
res = pipeline_en(text)[0]
|
26 |
+
return res['label'], res['score']
|
27 |
+
|
28 |
+
# Function to get synonyms using NLTK WordNet (Humanifier)
|
29 |
+
def get_synonyms_nltk(word, pos):
|
30 |
+
synsets = wordnet.synsets(word, pos=pos)
|
31 |
+
if synsets:
|
32 |
+
lemmas = synsets[0].lemmas()
|
33 |
+
return [lemma.name() for lemma in lemmas]
|
34 |
+
return []
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# Paraphrasing function using SpaCy and NLTK (Humanifier)
|
37 |
def paraphrase_with_spacy_nltk(text):
|
|
|
58 |
else:
|
59 |
paraphrased_words.append(token.text)
|
60 |
|
61 |
+
# Join the words back into a sentence
|
62 |
+
paraphrased_sentence = ' '.join(paraphrased_words)
|
63 |
+
|
64 |
+
return paraphrased_sentence
|
65 |
|
66 |
# Combined function: Paraphrase -> Grammar Correction -> Capitalization (Humanifier)
|
67 |
def paraphrase_and_correct(text):
|
68 |
# Step 1: Paraphrase the text
|
69 |
paraphrased_text = paraphrase_with_spacy_nltk(text)
|
70 |
|
71 |
+
# Additional steps (grammar correction, capitalization) can go here...
|
72 |
+
# For now, we'll return the paraphrased text as an example.
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
return paraphrased_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
# Gradio app setup with two tabs
|
77 |
with gr.Blocks() as demo:
|
|
|
93 |
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
|
94 |
|
95 |
# Launch the app with the remaining functionalities
|
96 |
+
demo.launch()
|