Spaces:
Running
Running
File size: 1,692 Bytes
fe5256f b5a7a74 fe5256f b5a7a74 fe5256f b5a7a74 fe5256f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
from langchain_community.llms import HuggingFaceEndpoint
import streamlit as st, Utilities as ut
from langchain import hub
from langchain.agents import AgentExecutor, create_react_agent, load_tools
from langchain_community.chat_models.huggingface import ChatHuggingFace
#from langchain_openai import OpenAI
import os
print('HF_TOKEN',os.getenv('HF_TOKEN'))
from langchain_community.callbacks.streamlit import (
StreamlitCallbackHandler,
)
st_callback = StreamlitCallbackHandler(st.container())
initdict={}
initdict = ut.get_tokens()
#hf_token = initdict["hf_token"]
hf_token = os.getenv('HF_TOKEN')
reactstyle_prompt = initdict["reactstyle_prompt"]
serpapi_api_key = initdict["serpapi_api_key"]
llm_repoid = initdict["llm_repoid"]
#llm = HuggingFaceEndpoint(repo_id=llm_repoid,temperature=0.9,verbose=True)
llm = HuggingFaceEndpoint(repo_id=llm_repoid,huggingfacehub_api_token=hf_token,temperature=0.9,verbose=True)
tools = load_tools(["serpapi"],llm=llm,serpapi_api_key=serpapi_api_key)
prompt = hub.pull(reactstyle_prompt)
agent = create_react_agent(llm, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True,handle_parsing_errors=True)
chat_model = ChatHuggingFace(llm=llm)
chat_model_with_stop = chat_model.bind(stop=["\nObservation"])
st.title("PatentGuru - Intelligent Chatbot")
if prompt := st.chat_input():
st.chat_message("user").write(prompt)
with st.chat_message("assistant"):
st_callback = StreamlitCallbackHandler(st.container())
response = agent_executor.invoke(
{"input": prompt}, {"callbacks": [st_callback], "handle_parsing_errors":True}
)
st.write(response["output"]) |