File size: 6,593 Bytes
3e43423
6d787c4
 
2ef57a2
c670c44
 
6d787c4
 
c670c44
6d787c4
3e43423
6d787c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0212ece
6d787c4
69db194
6d787c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c670c44
4779900
6d787c4
 
 
0212ece
 
6d787c4
 
0212ece
 
6d787c4
 
2ef57a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0212ece
2ef57a2
6d787c4
2ef57a2
 
 
6d787c4
 
 
 
 
 
0212ece
6d787c4
 
 
2ef57a2
 
 
 
 
 
 
 
 
 
 
 
 
 
6d787c4
 
 
 
0212ece
 
6d787c4
2ef57a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from datasets import load_dataset, get_dataset_config_names
from functools import partial
from pandas import DataFrame
from PIL import Image
import gradio as gr 
import numpy as np
import tqdm
import json
import os

DATASET = "satellogic/EarthView"
DEBUG = False

sets = {
    "satellogic": {
        "shards" : 3676,
    },
    "sentinel_1": {
        "shards" : 1763,
    },
    "neon": {
        "config" : "default",
        "shards" : 607,
        "path"   : "data",
    }
}

def open_dataset(dataset, set_name, split, batch_size, state, shard = -1):
    if shard == -1:
        # Trick to open the whole dataset
        data_files = None
        shards = 100
    else:
        config = sets[set_name].get("config", set_name)
        shards = sets[set_name]["shards"]
        path   = sets[set_name].get("path", set_name)
        data_files = {"train":[f"{path}/{split}-{shard:05d}-of-{shards:05d}.parquet"]}

    if DEBUG:
        ds  = lambda:None
        ds.n_shards = 1234
        dsi = range(100)
    else:
        ds = load_dataset(
            dataset,
            config,
            split=split,
            cache_dir="dataset",
            data_files=data_files,
            streaming=True,
            token=os.environ.get("HF_TOKEN", None))
    
        dsi = iter(ds)

    state["config"]  = config
    state["dsi"] = dsi
    return (
        gr.update(label=f"Shards (max {shards})", value=shard, maximum=shards),
        *get_images(batch_size, state),
        state
    )
    
def item_to_images(config, item):
    metadata = item["metadata"]
    if type(metadata) == str:
        metadata = json.loads(metadata)

    item = {
        k: np.asarray(v).astype("uint8")
            for k,v in item.items()
                if k != "metadata"
    }
    item["metadata"] = metadata
    
    if config == "satellogic":
        item["rgb"] = [
            Image.fromarray(image.transpose(1,2,0))
                for image in item["rgb"]
        ]
        item["1m"] = [
            Image.fromarray(image[0,:,:])
                for image in item["1m"]
        ]
    elif config == "sentinel_1":
        # Mapping of V and H to RGB. May not be correct
        # https://gis.stackexchange.com/questions/400726/creating-composite-rgb-images-from-sentinel-1-channels
        i10m = item["10m"]
        i10m = np.concatenate(
            (   i10m,
                np.expand_dims(
                    i10m[:,0,:,:]/(i10m[:,1,:,:]+0.01)*256,
                    1
                ).astype("uint8")
            ),
            1
        )
        item["10m"] = [
            Image.fromarray(image.transpose(1,2,0))
                for image in i10m
        ]
    elif config == "default":
        item["rgb"] = [
            Image.fromarray(image.transpose(1,2,0))
                for image in item["rgb"]
        ]
        item["chm"] = [
            Image.fromarray(image[0])
                for image in item["chm"]
        ]

        # The next is a very arbitrary conversion from the 369 hyperspectral data to RGB
        # It just averages each 1/3 of the bads and assigns it to a channel
        item["1m"] = [
            Image.fromarray(
                np.concatenate((
                    np.expand_dims(np.average(image[:124],0),2),
                    np.expand_dims(np.average(image[124:247],0),2),
                    np.expand_dims(np.average(image[247:],0),2))
                ,2).astype("uint8"))
                    for image in item["1m"]
        ]
    return item


def get_images(batch_size, state):
    config = state["config"]

    images = []
    metadatas = []
    
    for i in tqdm.trange(batch_size, desc=f"Getting images"):
        if DEBUG:
            image = np.random.randint(0,255,(384,384,3))
            metadata = {"bounds":[[1,1,4,4]], }
        else:
            try:
                item = next(state["dsi"])
            except StopIteration:
                break
            metadata = item["metadata"]
            item = item_to_images(config, item)

            if  config == "satellogic":
                images.extend(item["rgb"])
                images.extend(item["1m"])
            if  config == "sentinel_1":
                images.extend(item["10m"])
            if  config == "default":
                images.extend(item["rgb"])
                images.extend(item["chm"])
                images.extend(item["1m"])
            metadatas.append(item["metadata"])

    return images, DataFrame(metadatas)

def update_shape(rows, columns):
    return gr.update(rows=rows, columns=columns)

def new_state():
    return gr.State({})

if __name__ == "__main__":
    with gr.Blocks(title="Dataset Explorer", fill_height = True) as demo:
        state = new_state()

        gr.Markdown(f"# Viewer for [{DATASET}](https://huggingface.co/datasets/satellogic/EarthView) Dataset")
        batch_size = gr.Number(10, label = "Batch Size", render=False)
        shard = gr.Slider(label="Shard", minimum=0, maximum=10000, step=1, render=False)
        table = gr.DataFrame(render = False)
        # headers=["Index","TimeStamp","Bounds","CRS"], 

        gallery = gr.Gallery(
            label=DATASET,
            interactive=False,
            columns=5, rows=2, render=False)

        with gr.Row():
            dataset = gr.Textbox(label="Dataset", value=DATASET, interactive=False)
            config = gr.Dropdown(choices=sets.keys(), label="Config", value="satellogic", )
            split = gr.Textbox(label="Split", value="train")
            initial_shard = gr.Number(label = "Initial shard", value=0, info="-1 for whole dataset")

            gr.Button("Load (minutes)").click(
                open_dataset,
                inputs=[dataset, config, split, batch_size, state, initial_shard],
                outputs=[shard, gallery, table, state])

        gallery.render()
        
        with gr.Row():
            batch_size.render()

            rows = gr.Number(2, label="Rows")
            columns = gr.Number(5, label="Coluns")

            rows.change(update_shape, [rows, columns], [gallery])
            columns.change(update_shape, [rows, columns], [gallery])

        with gr.Row():
            shard.render()
            shard.release(
                open_dataset,
                inputs=[dataset, config, split, batch_size, state, shard],
                outputs=[shard, gallery, table, state])

            btn = gr.Button("Next Batch (same shard)", scale=0)
            btn.click(get_images, [batch_size, state], [gallery, table])
            btn.click()
        
        table.render()

    demo.launch(show_api=False)