File size: 5,439 Bytes
3e43423
6d787c4
 
c670c44
 
6d787c4
 
c670c44
6d787c4
3e43423
6d787c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0212ece
6d787c4
69db194
6d787c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c670c44
4779900
6d787c4
 
 
0212ece
 
6d787c4
 
0212ece
 
6d787c4
 
0212ece
6d787c4
 
 
 
 
 
 
 
 
0212ece
6d787c4
 
 
0212ece
4779900
 
6d787c4
 
4779900
0212ece
6d787c4
 
 
 
 
 
 
 
 
 
4779900
0212ece
6d787c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0212ece
 
6d787c4
 
0212ece
 
3e43423
6d787c4
 
 
 
 
 
3e43423
6d787c4
 
 
 
3e43423
 
6d787c4
69db194
6d787c4
 
 
0212ece
 
6d787c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0212ece
 
6d787c4
0212ece
 
6d787c4
 
 
 
11296d8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
from datasets import load_dataset, get_dataset_config_names
from functools import partial
from pandas import DataFrame
import gradio as gr 
import numpy as np
import tqdm
import json
import os

DATASET = "satellogic/EarthView"
DEBUG = False

sets = {
    "satellogic": {
        "shards" : 3676,
    },
    "sentinel_1": {
        "shards" : 1763,
    },
    "neon": {
        "config" : "default",
        "shards" : 607,
        "path"   : "data",
    }
}

def open_dataset(dataset, set_name, split, batch_size, state, shard = -1):
    if shard == -1:
        # Trick to open the whole dataset
        data_files = None
        shards = 100
    else:
        config = sets[set_name].get("config", set_name)
        shards = sets[set_name]["shards"]
        path   = sets[set_name].get("path", set_name)
        data_files = {"train":[f"{path}/{split}-{shard:05d}-of-{shards:05d}.parquet"]}

    if DEBUG:
        ds  = lambda:None
        ds.n_shards = 1234
        dsi = range(100)
    else:
        ds = load_dataset(
            dataset,
            config,
            split=split,
            cache_dir="dataset",
            data_files=data_files,
            streaming=True,
            token=os.environ.get("HF_TOKEN", None))
    
        dsi = iter(ds)

    state["config"]  = config
    state["dsi"] = dsi
    return (
        gr.update(label=f"Shards (max {shards})", value=shard, maximum=shards),
        *get_images(batch_size, state),
        state
    )
    
def get_images(batch_size, state):
    items = []
    metadatas = []

    for i in tqdm.trange(batch_size, desc=f"Getting images"):
        if DEBUG:
            image = np.random.randint(0,255,(384,384,3))
            metadata = {"bounds":[[1,1,4,4]], }
        else:
            try:
                item = next(state["dsi"])
            except StopIteration:
                break
            metadata = item["metadata"]
            if state["config"] == "satellogic":
                # image = (np.asarray(item["1m"])).astype("uint8")
                # items.append(image[0,0,:,:])
                image = np.asarray(item["rgb"][0]).astype(np.uint8)
                items.append(image.transpose(1,2,0))

            if state["config"] == "sentinel_1":
                metadata = json.loads(metadata)
                data = np.asarray(item["10m"])
                for i in range(data.shape[0]):
                    # Mapping of V and H to RGB. May not be correct
                    # https://gis.stackexchange.com/questions/400726/creating-composite-rgb-images-from-sentinel-1-channels
                    image = np.zeros((3,384,384), "uint8")
                    image[0] = data[i][0]
                    image[1] = data[i][1]
                    image[2] = (image[0]/(image[1]+0.1))*256
                    items.append(image.transpose(1,2,0))

            if state["config"] == "default":
                dataRGB = np.asarray(item["rgb"]).astype("uint8")
                dataCHM = np.asarray(item["chm"]).astype("uint8")
                data1m  = np.asarray(item["1m"]).astype("uint8")
                for i in range(dataRGB.shape[0]):
                    image = dataRGB[i,:,:,:]
                    items.append(image.transpose(1,2,0))

                    image = dataCHM[i,0,:,:]
                    items.append(image)

                    image = data1m[i,0,:,:]
                    items.append(image)
            metadatas.append(metadata)

    return items, DataFrame(metadatas)

def update_shape(rows, columns):
    return gr.update(rows=rows, columns=columns)

def new_state():
    return gr.State({})

with gr.Blocks(title="Dataset Explorer", fill_height = True) as demo:
    state = new_state()

    gr.Markdown(f"# Viewer for [{DATASET}](https://huggingface.co/datasets/satellogic/EarthView) Dataset")
    batch_size = gr.Number(10, label = "Batch Size", render=False)
    shard = gr.Slider(label="Shard", minimum=0, maximum=10000, step=1, render=False)
    table = gr.DataFrame(render = False)
    # headers=["Index","TimeStamp","Bounds","CRS"], 

    gallery = gr.Gallery(
        label=DATASET,
        interactive=False,
        columns=5, rows=2, render=False)

    with gr.Row():
        dataset = gr.Textbox(label="Dataset", value=DATASET, interactive=False)
        config = gr.Dropdown(choices=get_dataset_config_names(DATASET), label="Config", value="satellogic", )
        split = gr.Textbox(label="Split", value="train")
        initial_shard = gr.Number(label = "Initial shard", value=0, info="-1 for whole dataset")

        gr.Button("Load (minutes)").click(
            open_dataset,
            inputs=[dataset, config, split, batch_size, state, initial_shard],
            outputs=[shard, gallery, table, state])

    gallery.render()
    
    with gr.Row():
        batch_size.render()

        rows = gr.Number(2, label="Rows")
        columns = gr.Number(5, label="Coluns")

        rows.change(update_shape, [rows, columns], [gallery])
        columns.change(update_shape, [rows, columns], [gallery])

    with gr.Row():
        shard.render()
        shard.release(
            open_dataset,
            inputs=[dataset, config, split, batch_size, state, shard],
            outputs=[shard, gallery, table, state])

        btn = gr.Button("Next Batch (same shard)", scale=0)
        btn.click(get_images, [batch_size, state], [gallery, table])
        btn.click()
    
    table.render()

demo.launch(show_api=False)