Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
gera-richarte
commited on
Commit
•
196b164
1
Parent(s):
ae1a3fb
moved code to earthview.py
Browse files- app.py +11 -87
- earthview.py +84 -0
app.py
CHANGED
@@ -1,29 +1,15 @@
|
|
1 |
from datasets import load_dataset, get_dataset_config_names
|
2 |
from functools import partial
|
3 |
from pandas import DataFrame
|
4 |
-
|
5 |
import gradio as gr
|
6 |
-
import numpy as np
|
7 |
import tqdm
|
8 |
-
import json
|
9 |
import os
|
10 |
|
11 |
-
DATASET = "satellogic/EarthView"
|
12 |
DEBUG = False
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
"shards" : 3676,
|
17 |
-
},
|
18 |
-
"sentinel_1": {
|
19 |
-
"shards" : 1763,
|
20 |
-
},
|
21 |
-
"neon": {
|
22 |
-
"config" : "default",
|
23 |
-
"shards" : 607,
|
24 |
-
"path" : "data",
|
25 |
-
}
|
26 |
-
}
|
27 |
|
28 |
def open_dataset(dataset, set_name, split, batch_size, state, shard = -1):
|
29 |
if shard == -1:
|
@@ -31,9 +17,9 @@ def open_dataset(dataset, set_name, split, batch_size, state, shard = -1):
|
|
31 |
data_files = None
|
32 |
shards = 100
|
33 |
else:
|
34 |
-
config = sets[set_name].get("config", set_name)
|
35 |
-
shards = sets[set_name]["shards"]
|
36 |
-
path = sets[set_name].get("path", set_name)
|
37 |
data_files = {"train":[f"{path}/{split}-{shard:05d}-of-{shards:05d}.parquet"]}
|
38 |
|
39 |
if DEBUG:
|
@@ -60,68 +46,6 @@ def open_dataset(dataset, set_name, split, batch_size, state, shard = -1):
|
|
60 |
state
|
61 |
)
|
62 |
|
63 |
-
def item_to_images(config, item):
|
64 |
-
metadata = item["metadata"]
|
65 |
-
if type(metadata) == str:
|
66 |
-
metadata = json.loads(metadata)
|
67 |
-
|
68 |
-
item = {
|
69 |
-
k: np.asarray(v).astype("uint8")
|
70 |
-
for k,v in item.items()
|
71 |
-
if k != "metadata"
|
72 |
-
}
|
73 |
-
item["metadata"] = metadata
|
74 |
-
|
75 |
-
if config == "satellogic":
|
76 |
-
item["rgb"] = [
|
77 |
-
Image.fromarray(image.transpose(1,2,0))
|
78 |
-
for image in item["rgb"]
|
79 |
-
]
|
80 |
-
item["1m"] = [
|
81 |
-
Image.fromarray(image[0,:,:])
|
82 |
-
for image in item["1m"]
|
83 |
-
]
|
84 |
-
elif config == "sentinel_1":
|
85 |
-
# Mapping of V and H to RGB. May not be correct
|
86 |
-
# https://gis.stackexchange.com/questions/400726/creating-composite-rgb-images-from-sentinel-1-channels
|
87 |
-
i10m = item["10m"]
|
88 |
-
i10m = np.concatenate(
|
89 |
-
( i10m,
|
90 |
-
np.expand_dims(
|
91 |
-
i10m[:,0,:,:]/(i10m[:,1,:,:]+0.01)*256,
|
92 |
-
1
|
93 |
-
).astype("uint8")
|
94 |
-
),
|
95 |
-
1
|
96 |
-
)
|
97 |
-
item["10m"] = [
|
98 |
-
Image.fromarray(image.transpose(1,2,0))
|
99 |
-
for image in i10m
|
100 |
-
]
|
101 |
-
elif config == "default":
|
102 |
-
item["rgb"] = [
|
103 |
-
Image.fromarray(image.transpose(1,2,0))
|
104 |
-
for image in item["rgb"]
|
105 |
-
]
|
106 |
-
item["chm"] = [
|
107 |
-
Image.fromarray(image[0])
|
108 |
-
for image in item["chm"]
|
109 |
-
]
|
110 |
-
|
111 |
-
# The next is a very arbitrary conversion from the 369 hyperspectral data to RGB
|
112 |
-
# It just averages each 1/3 of the bads and assigns it to a channel
|
113 |
-
item["1m"] = [
|
114 |
-
Image.fromarray(
|
115 |
-
np.concatenate((
|
116 |
-
np.expand_dims(np.average(image[:124],0),2),
|
117 |
-
np.expand_dims(np.average(image[124:247],0),2),
|
118 |
-
np.expand_dims(np.average(image[247:],0),2))
|
119 |
-
,2).astype("uint8"))
|
120 |
-
for image in item["1m"]
|
121 |
-
]
|
122 |
-
return item
|
123 |
-
|
124 |
-
|
125 |
def get_images(batch_size, state):
|
126 |
config = state["config"]
|
127 |
|
@@ -138,7 +62,7 @@ def get_images(batch_size, state):
|
|
138 |
except StopIteration:
|
139 |
break
|
140 |
metadata = item["metadata"]
|
141 |
-
item = item_to_images(config, item)
|
142 |
|
143 |
if config == "satellogic":
|
144 |
images.extend(item["rgb"])
|
@@ -163,20 +87,20 @@ if __name__ == "__main__":
|
|
163 |
with gr.Blocks(title="Dataset Explorer", fill_height = True) as demo:
|
164 |
state = new_state()
|
165 |
|
166 |
-
gr.Markdown(f"# Viewer for [{DATASET}](https://huggingface.co/datasets/satellogic/EarthView) Dataset")
|
167 |
batch_size = gr.Number(10, label = "Batch Size", render=False)
|
168 |
shard = gr.Slider(label="Shard", minimum=0, maximum=10000, step=1, render=False)
|
169 |
table = gr.DataFrame(render = False)
|
170 |
# headers=["Index","TimeStamp","Bounds","CRS"],
|
171 |
|
172 |
gallery = gr.Gallery(
|
173 |
-
label=DATASET,
|
174 |
interactive=False,
|
175 |
columns=5, rows=2, render=False)
|
176 |
|
177 |
with gr.Row():
|
178 |
-
dataset = gr.Textbox(label="Dataset", value=DATASET, interactive=False)
|
179 |
-
config = gr.Dropdown(choices=
|
180 |
split = gr.Textbox(label="Split", value="train")
|
181 |
initial_shard = gr.Number(label = "Initial shard", value=0, info="-1 for whole dataset")
|
182 |
|
|
|
1 |
from datasets import load_dataset, get_dataset_config_names
|
2 |
from functools import partial
|
3 |
from pandas import DataFrame
|
4 |
+
import earthview as ev
|
5 |
import gradio as gr
|
|
|
6 |
import tqdm
|
|
|
7 |
import os
|
8 |
|
|
|
9 |
DEBUG = False
|
10 |
|
11 |
+
if DEBUG:
|
12 |
+
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
def open_dataset(dataset, set_name, split, batch_size, state, shard = -1):
|
15 |
if shard == -1:
|
|
|
17 |
data_files = None
|
18 |
shards = 100
|
19 |
else:
|
20 |
+
config = ev.sets[set_name].get("config", set_name)
|
21 |
+
shards = ev.sets[set_name]["shards"]
|
22 |
+
path = ev.sets[set_name].get("path", set_name)
|
23 |
data_files = {"train":[f"{path}/{split}-{shard:05d}-of-{shards:05d}.parquet"]}
|
24 |
|
25 |
if DEBUG:
|
|
|
46 |
state
|
47 |
)
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
def get_images(batch_size, state):
|
50 |
config = state["config"]
|
51 |
|
|
|
62 |
except StopIteration:
|
63 |
break
|
64 |
metadata = item["metadata"]
|
65 |
+
item = ev.item_to_images(config, item)
|
66 |
|
67 |
if config == "satellogic":
|
68 |
images.extend(item["rgb"])
|
|
|
87 |
with gr.Blocks(title="Dataset Explorer", fill_height = True) as demo:
|
88 |
state = new_state()
|
89 |
|
90 |
+
gr.Markdown(f"# Viewer for [{ev.DATASET}](https://huggingface.co/datasets/satellogic/EarthView) Dataset")
|
91 |
batch_size = gr.Number(10, label = "Batch Size", render=False)
|
92 |
shard = gr.Slider(label="Shard", minimum=0, maximum=10000, step=1, render=False)
|
93 |
table = gr.DataFrame(render = False)
|
94 |
# headers=["Index","TimeStamp","Bounds","CRS"],
|
95 |
|
96 |
gallery = gr.Gallery(
|
97 |
+
label=ev.DATASET,
|
98 |
interactive=False,
|
99 |
columns=5, rows=2, render=False)
|
100 |
|
101 |
with gr.Row():
|
102 |
+
dataset = gr.Textbox(label="Dataset", value=ev.DATASET, interactive=False)
|
103 |
+
config = gr.Dropdown(choices=ev.get_sets(), label="Config", value="satellogic", )
|
104 |
split = gr.Textbox(label="Split", value="train")
|
105 |
initial_shard = gr.Number(label = "Initial shard", value=0, info="-1 for whole dataset")
|
106 |
|
earthview.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import numpy as np
|
3 |
+
import json
|
4 |
+
|
5 |
+
DATASET = "satellogic/EarthView"
|
6 |
+
|
7 |
+
sets = {
|
8 |
+
"satellogic": {
|
9 |
+
"shards" : 3676,
|
10 |
+
},
|
11 |
+
"sentinel_1": {
|
12 |
+
"shards" : 1763,
|
13 |
+
},
|
14 |
+
"neon": {
|
15 |
+
"config" : "default",
|
16 |
+
"shards" : 607,
|
17 |
+
"path" : "data",
|
18 |
+
}
|
19 |
+
}
|
20 |
+
|
21 |
+
def get_sets():
|
22 |
+
return sets.keys()
|
23 |
+
|
24 |
+
def item_to_images(config, item):
|
25 |
+
metadata = item["metadata"]
|
26 |
+
if type(metadata) == str:
|
27 |
+
metadata = json.loads(metadata)
|
28 |
+
|
29 |
+
item = {
|
30 |
+
k: np.asarray(v).astype("uint8")
|
31 |
+
for k,v in item.items()
|
32 |
+
if k != "metadata"
|
33 |
+
}
|
34 |
+
item["metadata"] = metadata
|
35 |
+
|
36 |
+
if config == "satellogic":
|
37 |
+
item["rgb"] = [
|
38 |
+
Image.fromarray(image.transpose(1,2,0))
|
39 |
+
for image in item["rgb"]
|
40 |
+
]
|
41 |
+
item["1m"] = [
|
42 |
+
Image.fromarray(image[0,:,:])
|
43 |
+
for image in item["1m"]
|
44 |
+
]
|
45 |
+
elif config == "sentinel_1":
|
46 |
+
# Mapping of V and H to RGB. May not be correct
|
47 |
+
# https://gis.stackexchange.com/questions/400726/creating-composite-rgb-images-from-sentinel-1-channels
|
48 |
+
i10m = item["10m"]
|
49 |
+
i10m = np.concatenate(
|
50 |
+
( i10m,
|
51 |
+
np.expand_dims(
|
52 |
+
i10m[:,0,:,:]/(i10m[:,1,:,:]+0.01)*256,
|
53 |
+
1
|
54 |
+
).astype("uint8")
|
55 |
+
),
|
56 |
+
1
|
57 |
+
)
|
58 |
+
item["10m"] = [
|
59 |
+
Image.fromarray(image.transpose(1,2,0))
|
60 |
+
for image in i10m
|
61 |
+
]
|
62 |
+
elif config == "default":
|
63 |
+
item["rgb"] = [
|
64 |
+
Image.fromarray(image.transpose(1,2,0))
|
65 |
+
for image in item["rgb"]
|
66 |
+
]
|
67 |
+
item["chm"] = [
|
68 |
+
Image.fromarray(image[0])
|
69 |
+
for image in item["chm"]
|
70 |
+
]
|
71 |
+
|
72 |
+
# The next is a very arbitrary conversion from the 369 hyperspectral data to RGB
|
73 |
+
# It just averages each 1/3 of the bads and assigns it to a channel
|
74 |
+
item["1m"] = [
|
75 |
+
Image.fromarray(
|
76 |
+
np.concatenate((
|
77 |
+
np.expand_dims(np.average(image[:124],0),2),
|
78 |
+
np.expand_dims(np.average(image[124:247],0),2),
|
79 |
+
np.expand_dims(np.average(image[247:],0),2))
|
80 |
+
,2).astype("uint8"))
|
81 |
+
for image in item["1m"]
|
82 |
+
]
|
83 |
+
return item
|
84 |
+
|