import gradio as gr import subprocess subprocess.run(["pip", "install", "transformers"]) subprocess.run(["pip", "install", "sentencepiece"]) subprocess.run(["pip", "install", "torch"]) from transformers import MarianMTModel, MarianTokenizer # Load the model and tokenizer model_name = "Helsinki-NLP/opus-mt-en-hi" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) def translate(text): inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) translated = model.generate(**inputs) return tokenizer.decode(translated[0], skip_special_tokens=True) # Gradio interface iface = gr.Interface( fn=translate, inputs=gr.Textbox(label="Enter English Text"), outputs=gr.Textbox(label="Hindi Translation"), title="English to Hindi Translator", description="Enter an English sentence, and the model will translate it into Hindi." ) iface.launch()