import os os.system("pip install transformers torch") # Use a pipeline as a high-level helper from transformers import pipeline pipe = pipeline("text2text-generation", model="facebook/mbart-large-50-many-to-one-mmt") # Load model directly from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-50-many-to-one-mmt", use_fast=False) model = AutoModelForSeq2SeqLM.from_pretrained("facebook/mbart-large-50-many-to-one-mmt") article_hi = "संयुक्त राष्ट्र के प्रमुख का कहना है कि सीरिया में कोई सैन्य समाधान नहीं है" article_ar = "الأمين العام للأمم المتحدة يقول إنه لا يوجد حل عسكري في سوريا." # translate Hindi to English tokenizer.src_lang = "hi_IN" encoded_hi = tokenizer(article_hi, return_tensors="pt") generated_tokens = model.generate(**encoded_hi) tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) # => "The head of the UN says there is no military solution in Syria." # translate Arabic to English tokenizer.src_lang = "ar_AR" encoded_ar = tokenizer(article_ar, return_tensors="pt") generated_tokens = model.generate(**encoded_ar) tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) # => "The Secretary-General of the United Nations says there is no military solution in Syria."