from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Pinecone from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings import pinecone import asyncio from langchain.document_loaders.sitemap import SitemapLoader # Function to fetch data from website # https://python.langchain.com/docs/modules/data_connection/document_loaders/integrations/sitemap def get_website_data(sitemap_url): loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) loader = SitemapLoader( sitemap_url ) docs = loader.load() return docs # Function to split data into smaller chunks def split_data(docs): text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200, length_function=len, ) docs_chunks = text_splitter.split_documents(docs) return docs_chunks # Function to create embeddings instance def create_embeddings(): embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") return embeddings # Function to push data to Pinecone def push_to_pinecone(pinecone_apikey, pinecone_environment, pinecone_index_name, embeddings, docs): pinecone.init( api_key=pinecone_apikey, environment=pinecone_environment ) index_name = pinecone_index_name index = Pinecone.from_documents(docs, embeddings, index_name=index_name) return index # Function to pull index data from Pinecone def pull_from_pinecone(pinecone_apikey, pinecone_environment, pinecone_index_name, embeddings): pinecone.init( api_key=pinecone_apikey, environment=pinecone_environment ) index_name = pinecone_index_name index = Pinecone.from_existing_index(index_name, embeddings) return index # This function will help us in fetching the top relevent documents from our vector store - Pinecone Index def get_similar_docs(index, query, k=2): similar_docs = index.similarity_search(query, k=k) return similar_docs