Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
|
2 |
import streamlit as st
|
3 |
# from dotenv import load_dotenv
|
4 |
import pickle
|
@@ -16,85 +15,93 @@ from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddi
|
|
16 |
from langchain.embeddings import HuggingFaceHubEmbeddings
|
17 |
# Sidebar contents
|
18 |
from langchain.llms import HuggingFaceHub
|
|
|
|
|
|
|
|
|
|
|
19 |
with st.sidebar:
|
20 |
st.title('π€π¬ LLM Chat App')
|
21 |
st.markdown('''
|
22 |
## About
|
23 |
-
This app is an LLM-powered chatbot
|
24 |
-
-
|
25 |
-
- [LangChain](https://python.langchain.com/)
|
26 |
-
- [OpenAI](https://platform.openai.com/docs/models) LLM model
|
27 |
|
28 |
''')
|
29 |
add_vertical_space(5)
|
30 |
-
|
31 |
-
|
|
|
|
|
32 |
|
33 |
# load_dotenv()
|
34 |
|
35 |
-
|
36 |
|
37 |
|
38 |
def main():
|
39 |
st.header("Chat with PDF π¬")
|
40 |
-
|
41 |
-
# upload a PDF file
|
42 |
pdf = st.file_uploader("Upload your PDF", type='pdf')
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
text
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
else:
|
69 |
-
|
70 |
-
# openai_api_key='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')
|
71 |
-
# embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
72 |
-
embeddings = HuggingFaceHubEmbeddings(
|
73 |
-
huggingfacehub_api_token='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')
|
74 |
-
VectorStore = FAISS.from_texts(chunks, embedding=embeddings)
|
75 |
-
# VectorStore=Chroma.from_documents(chunks, embeddings)
|
76 |
-
with open(f"{store_name}.pkl", "wb") as f:
|
77 |
-
pickle.dump(VectorStore, f)
|
78 |
-
|
79 |
-
# embeddings = OpenAIEmbeddings()
|
80 |
-
# VectorStore = FAISS.from_texts(chunks, embedding=embeddings)
|
81 |
-
|
82 |
-
# Accept user questions/query
|
83 |
-
query = st.text_input("Ask questions about your PDF file:")
|
84 |
-
# st.write(query)
|
85 |
-
|
86 |
-
if query:
|
87 |
-
docs = VectorStore.similarity_search(query=query, k=3)
|
88 |
-
llm = HuggingFaceHub(repo_id='google/flan-ul2',
|
89 |
-
huggingfacehub_api_token='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', model_kwargs={"temperature": 0.1, "max_new_tokens": 500})
|
90 |
-
# llm = OpenAI()
|
91 |
-
chain = load_qa_chain(llm=llm, chain_type="stuff")
|
92 |
-
response = chain.run(input_documents=docs, question=query)
|
93 |
-
# with get_openai_callback() as cb:
|
94 |
-
# response = chain.run(input_documents=docs, question=query)
|
95 |
-
# print(cb)
|
96 |
-
st.write(response)
|
97 |
|
98 |
|
99 |
if __name__ == '__main__':
|
100 |
-
main()
|
|
|
|
|
1 |
import streamlit as st
|
2 |
# from dotenv import load_dotenv
|
3 |
import pickle
|
|
|
15 |
from langchain.embeddings import HuggingFaceHubEmbeddings
|
16 |
# Sidebar contents
|
17 |
from langchain.llms import HuggingFaceHub
|
18 |
+
|
19 |
+
|
20 |
+
if 'HuggingFace_API_Key' not in st.session_state:
|
21 |
+
st.session_state['HuggingFace_API_Key'] = ''
|
22 |
+
|
23 |
with st.sidebar:
|
24 |
st.title('π€π¬ LLM Chat App')
|
25 |
st.markdown('''
|
26 |
## About
|
27 |
+
This app is an LLM-powered chatbot
|
28 |
+
PDF:Chatbot AI-powered chat assistant for PDFs
|
|
|
|
|
29 |
|
30 |
''')
|
31 |
add_vertical_space(5)
|
32 |
+
|
33 |
+
|
34 |
+
st.session_state['HuggingFace_API_Key'] = st.sidebar.text_input(
|
35 |
+
"What's your HuggingFace API key?", type="password")
|
36 |
|
37 |
# load_dotenv()
|
38 |
|
39 |
+
load_button = st.sidebar.button("Load data to Pinecone", key="load_button")
|
40 |
|
41 |
|
42 |
def main():
|
43 |
st.header("Chat with PDF π¬")
|
|
|
|
|
44 |
pdf = st.file_uploader("Upload your PDF", type='pdf')
|
45 |
|
46 |
+
if st.session_state['HuggingFace_API_Key'] != "":
|
47 |
+
# upload a PDF file
|
48 |
+
# st.write(pdf)
|
49 |
+
if pdf is not None:
|
50 |
+
pdf_reader = PdfReader(pdf)
|
51 |
+
|
52 |
+
text = ""
|
53 |
+
for page in pdf_reader.pages:
|
54 |
+
text += page.extract_text()
|
55 |
+
# st.write(text)
|
56 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
57 |
+
chunk_size=1000,
|
58 |
+
chunk_overlap=200,
|
59 |
+
length_function=len
|
60 |
+
)
|
61 |
+
chunks = text_splitter.split_text(text=text)
|
62 |
+
|
63 |
+
# # embeddings
|
64 |
+
store_name = pdf.name[:-4]
|
65 |
+
st.write(f'{store_name}')
|
66 |
+
# st.write(chunks)
|
67 |
+
|
68 |
+
if os.path.exists(f"{store_name}.pkl"):
|
69 |
+
with open(f"{store_name}.pkl", "rb") as f:
|
70 |
+
VectorStore = pickle.load(f)
|
71 |
+
# st.write('Embeddings Loaded from the Disk')s
|
72 |
+
else:
|
73 |
+
# embeddings = OpenAIEmbeddings(
|
74 |
+
# openai_api_key='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')
|
75 |
+
# embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
76 |
+
embeddings = HuggingFaceHubEmbeddings(
|
77 |
+
huggingfacehub_api_token=st.session_state['HuggingFace_API_Key'])
|
78 |
+
VectorStore = FAISS.from_texts(
|
79 |
+
chunks, embedding=embeddings)
|
80 |
+
# VectorStore=Chroma.from_documents(chunks, embeddings)
|
81 |
+
with open(f"{store_name}.pkl", "wb") as f:
|
82 |
+
pickle.dump(VectorStore, f)
|
83 |
+
|
84 |
+
# embeddings = OpenAIEmbeddings()
|
85 |
+
# VectorStore = FAISS.from_texts(chunks, embedding=embeddings)
|
86 |
+
|
87 |
+
# Accept user questions/query
|
88 |
+
query = st.text_input("Ask questions about your PDF file:")
|
89 |
+
# st.write(query)
|
90 |
+
|
91 |
+
if query:
|
92 |
+
docs = VectorStore.similarity_search(query=query, k=3)
|
93 |
+
llm = HuggingFaceHub(repo_id='google/flan-ul2',
|
94 |
+
huggingfacehub_api_token=st.session_state['HuggingFace_API_Key'], model_kwargs={"temperature": 0.1, "max_new_tokens": 500})
|
95 |
+
# llm = OpenAI()
|
96 |
+
chain = load_qa_chain(llm=llm, chain_type="stuff")
|
97 |
+
response = chain.run(input_documents=docs, question=query)
|
98 |
+
# with get_openai_callback() as cb:
|
99 |
+
# response = chain.run(input_documents=docs, question=query)
|
100 |
+
# print(cb)
|
101 |
+
st.write(response)
|
102 |
else:
|
103 |
+
st.sidebar.error("Ooopssss!!! Please upload pdf...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
|
106 |
if __name__ == '__main__':
|
107 |
+
main()
|