import streamlit as st # from dotenv import load_dotenv import pickle from PyPDF2 import PdfReader from streamlit_extras.add_vertical_space import add_vertical_space from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.llms import OpenAI from langchain.chains.question_answering import load_qa_chain from langchain.callbacks import get_openai_callback import os from langchain.vectorstores import Chroma from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings from langchain.embeddings import HuggingFaceHubEmbeddings # Sidebar contents from langchain.llms import HuggingFaceHub if 'HuggingFace_API_Key' not in st.session_state: st.session_state['HuggingFace_API_Key'] = '' with st.sidebar: st.title('🤗💬 LLM Chat App') st.markdown(''' ## About This app is an LLM-powered chatbot PDF:Chatbot AI-powered chat assistant for PDFs ''') add_vertical_space(5) st.session_state['HuggingFace_API_Key'] = st.sidebar.text_input( "What's your HuggingFace API key?", type="password") # load_dotenv() load_button = st.sidebar.button("Submit API Key", key="load_button") def main(): st.header("Chat with PDF 💬") pdf = st.file_uploader("Upload your PDF", type='pdf') if st.session_state['HuggingFace_API_Key'] != "": # upload a PDF file # st.write(pdf) if pdf is not None: pdf_reader = PdfReader(pdf) text = "" for page in pdf_reader.pages: text += page.extract_text() # st.write(text) text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text=text) # # embeddings store_name = pdf.name[:-4] # st.write(f'{store_name}') # st.write(chunks) if os.path.exists(f"{store_name}.pkl"): with open(f"{store_name}.pkl", "rb") as f: VectorStore = pickle.load(f) # st.write('Embeddings Loaded from the Disk')s else: # embeddings = OpenAIEmbeddings( # openai_api_key='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') # embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") embeddings = HuggingFaceHubEmbeddings( huggingfacehub_api_token=st.session_state['HuggingFace_API_Key']) VectorStore = FAISS.from_texts( chunks, embedding=embeddings) # VectorStore=Chroma.from_documents(chunks, embeddings) with open(f"{store_name}.pkl", "wb") as f: pickle.dump(VectorStore, f) # embeddings = OpenAIEmbeddings() # VectorStore = FAISS.from_texts(chunks, embedding=embeddings) # Accept user questions/query query = st.text_input("Ask questions about your PDF file:") # st.write(query) if query: docs = VectorStore.similarity_search(query=query, k=3) llm = HuggingFaceHub(repo_id='google/flan-ul2', huggingfacehub_api_token=st.session_state['HuggingFace_API_Key'], model_kwargs={"temperature": 0.1, "max_new_tokens": 500}) # llm = OpenAI() chain = load_qa_chain(llm=llm, chain_type="stuff") response = chain.run(input_documents=docs, question=query) # with get_openai_callback() as cb: # response = chain.run(input_documents=docs, question=query) # print(cb) st.write(response) if __name__ == '__main__': main()