Spaces:
Runtime error
Runtime error
File size: 6,958 Bytes
44663cf 0f38a56 44663cf 0f38a56 44663cf 2423be8 44663cf 177651b 44663cf a087579 44663cf df8105a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import streamlit as st
import pandas as pd
import numpy as np
import re
import string
import textwrap
from transformers import BertTokenizer, BertForSequenceClassification, AutoModelForCausalLM, AutoTokenizer, pipeline, AdamW
from happytransformer import HappyTextToText, TTSettings
import torch
from torch.nn import BCEWithLogitsLoss
from torch.utils.data import DataLoader, TensorDataset, random_split
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("saurabhg2083/model_bert")
model = AutoModelForSequenceClassification.from_pretrained("saurabhg2083/model_bert")
happy_tt = HappyTextToText("T5", "vennify/t5-base-grammar-correction")
args = TTSettings(num_beams=5, min_length=1)
gendered_pronouns = [
'ambition', 'driven', 'lead', 'persist', 'principle', 'decision', 'superior', 'individual', 'assertive',
'strong', 'hierarchical', 'rigid', 'silicon valley', 'stock options', 'takes risk', 'workforce', 'autonomous',
'ping pong', 'pool table', 'must', 'competitive', 'he', 'his', 'himself', 'confident', 'active', 'aggressive',
'ambitious', 'fearless', 'headstrong', 'defensive', 'independent', 'dominant', 'outspoken', 'leader', 'fast paced',
'adventurous', 'analytical', 'decisive', 'determined', 'ninja', 'objective', 'rock star', 'boast', 'challenging', 'courage',
'thoughtful', 'creative', 'adaptable', 'choose', 'curious', 'excellent', 'flexible', 'multitasking', 'health',
'imaginative', 'intuitive', 'leans in', 'plans for the future', 'resilient', 'self-aware', 'socially responsible',
'trustworthy', 'shup-to-date', 'wellness program', 'nurture', 'teach', 'dependable', 'community', 'serving', 'loyal',
'enthusiasm', 'interpersonal', 'connect', 'commit', 'she', 'agree', 'empathy', 'sensitive', 'affectionate', 'feel',
'support', 'collaborate', 'honest', 'trust', 'understand', 'compassion', 'share', 'polite', 'kind', 'caring', 'her',
'hers', 'herself', 'feminine', 'cheer', 'communal', 'emotional', 'flatterable', 'gentle', 'interdependent', 'kinship',
'modesty', 'pleasant', 'polite', 'quiet', 'sympathy', 'warm', 'dominant', 'yield',
'native english speaker', 'professionally groomed hair', 'native', 'culture fit', 'non-white', 'clean-shaven',
'neat hairstyle', 'master', 'slave', 'a cakewalk', 'brownbag session', 'spirit animal', 'digital native',
'servant leadership', 'tribe', 'oriental', 'spic', 'english fluency', 'level native', 'illegals', 'eskimo',
'latino', 'latina', 'migrant', 'blacklist', 'whitelist'
]
# List of neutral words
neutral_words = [
"drive",
"motivated",
"guide",
"continue",
"ethic",
"choice",
"excellent",
"person",
"confident",
"resilient",
"structured",
"inflexible",
"tech industry",
"equity options",
"is adventurous",
"employees",
"independent",
"table tennis",
"billiards table",
"should",
"challenging",
"they",
"their",
"themselves",
"self-assured",
"energetic",
"assertive",
"aspiring",
"courageous",
"determined",
"protective",
"self-reliant",
"influential",
"expressive",
"guiding force",
"high-speed",
"daring",
"logical",
"resolute",
"committed",
"expert",
"impartial",
"outstanding performer",
"brag",
"demanding",
"bravery",
"considerate",
"innovative",
"flexible",
"select",
"inquisitive",
"outstanding",
"adaptable",
"handling multiple tasks",
"well-being",
"creative",
"instinctive",
"long-term planning",
"tough",
"aware of oneself",
"ethical",
"reliable",
"current",
"health program",
"foster",
"instruct",
"reliable",
"society",
"assisting",
"devoted",
"passion",
"relational",
"link",
"dedicate",
"they",
"concur",
"understanding",
"responsive",
"loving",
"experience",
"assist",
"work together",
"truthful",
"confidence",
"comprehend",
"sympathy",
"contribute",
"courteous",
"considerate",
"supportive",
"their",
"theirs",
"themselves",
"androgynous",
"encourage",
"collective",
"expressive",
"complimentable",
"tender",
"mutual",
"connection",
"humility",
"agreeable",
"silent",
"empathy",
"friendly",
"leading",
"produce",
"fluent English speaker",
"well-groomed appearance",
"indigenous",
"cultural alignment",
"diverse",
"clean-cut",
"tidy hair",
"expert",
"subordinate",
"easy task",
"informal meeting",
"personal inspiration",
"tech-savvy",
"supportive leadership",
"community",
"eastern",
"avoid using",
"english proficiency",
"fluent",
"unauthorized individuals",
"indigenous Northern people",
"hispanic",
"latinx",
"mobile worker",
"inclusion list",
]
def replace_gendered_pronouns(text):
# Define a dictionary of gendered pronouns and their gender-neutral replacements
word_dict = dict(zip(gendered_pronouns, neutral_words))
# Use regular expressions to find and replace gendered pronouns in the text
for pronoun, replacement in word_dict.items():
# Use word boundaries to match whole words only
pattern = r'\b' + re.escape(pronoun) + r'\b'
text = re.sub(pattern, replacement, text, flags=re.IGNORECASE)
return text
def model_eval(text):
# Put the model in evaluation mode
model.eval()
# Input text
input_text = text
# Tokenize the input text
inputs = tokenizer(input_text, padding='max_length', truncation=True, max_length=512, return_tensors="pt")
# Make the prediction
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_label = (logits > 0).int().item()
return predicted_label
st.title("Job Bias Testing")
text1 = st.text_area("Enter Text 1")
if st.button("Check Bias"):
if text1:
predicted_label = model_eval(text1)
# Convert 0 or 1 label back to a meaningful label if needed
label_mapping = {0: "Negative", 1: "Positive"}
predicted_label_text = label_mapping[predicted_label]
#print(f"Predicted Label: {predicted_label_text}")
if predicted_label_text == "Positive":
rewritten_sentence = replace_gendered_pronouns(text1)
# Add the prefix "grammar: " before each input
result = happy_tt.generate_text("grammar: "+rewritten_sentence, args=args)
#print(result.text) # This sentence has bad grammar.
st.success(f"Predicted Label: {predicted_label_text} and new Text is: {result.text}")
else:
st.warning("Please enter text Job Description.")
|