Spaces:
Paused
Paused
File size: 3,182 Bytes
8b7211f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
# Ultralytics YOLO 🚀, GPL-3.0 license
"""
Base callbacks
"""
# Trainer callbacks ----------------------------------------------------------------------------------------------------
def on_pretrain_routine_start(trainer):
pass
def on_pretrain_routine_end(trainer):
pass
def on_train_start(trainer):
pass
def on_train_epoch_start(trainer):
pass
def on_train_batch_start(trainer):
pass
def optimizer_step(trainer):
pass
def on_before_zero_grad(trainer):
pass
def on_train_batch_end(trainer):
pass
def on_train_epoch_end(trainer):
pass
def on_fit_epoch_end(trainer):
pass
def on_model_save(trainer):
pass
def on_train_end(trainer):
pass
def on_params_update(trainer):
pass
def teardown(trainer):
pass
# Validator callbacks --------------------------------------------------------------------------------------------------
def on_val_start(validator):
pass
def on_val_batch_start(validator):
pass
def on_val_batch_end(validator):
pass
def on_val_end(validator):
pass
# Predictor callbacks --------------------------------------------------------------------------------------------------
def on_predict_start(predictor):
pass
def on_predict_batch_start(predictor):
pass
def on_predict_batch_end(predictor):
pass
def on_predict_end(predictor):
pass
# Exporter callbacks ---------------------------------------------------------------------------------------------------
def on_export_start(exporter):
pass
def on_export_end(exporter):
pass
default_callbacks = {
# Run in trainer
'on_pretrain_routine_start': on_pretrain_routine_start,
'on_pretrain_routine_end': on_pretrain_routine_end,
'on_train_start': on_train_start,
'on_train_epoch_start': on_train_epoch_start,
'on_train_batch_start': on_train_batch_start,
'optimizer_step': optimizer_step,
'on_before_zero_grad': on_before_zero_grad,
'on_train_batch_end': on_train_batch_end,
'on_train_epoch_end': on_train_epoch_end,
'on_fit_epoch_end': on_fit_epoch_end, # fit = train + val
'on_model_save': on_model_save,
'on_train_end': on_train_end,
'on_params_update': on_params_update,
'teardown': teardown,
# Run in validator
'on_val_start': on_val_start,
'on_val_batch_start': on_val_batch_start,
'on_val_batch_end': on_val_batch_end,
'on_val_end': on_val_end,
# Run in predictor
'on_predict_start': on_predict_start,
'on_predict_batch_start': on_predict_batch_start,
'on_predict_batch_end': on_predict_batch_end,
'on_predict_end': on_predict_end,
# Run in exporter
'on_export_start': on_export_start,
'on_export_end': on_export_end}
def add_integration_callbacks(instance):
from .clearml import callbacks as clearml_callbacks
from .comet import callbacks as comet_callbacks
from .hub import callbacks as hub_callbacks
from .tensorboard import callbacks as tb_callbacks
for x in clearml_callbacks, comet_callbacks, hub_callbacks, tb_callbacks:
for k, v in x.items():
instance.callbacks[k].append(v) # callback[name].append(func)
|