File size: 1,597 Bytes
8b7211f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# Ultralytics YOLO 🚀, GPL-3.0 license

from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params

try:
    import comet_ml

except (ModuleNotFoundError, ImportError):
    comet_ml = None


def on_pretrain_routine_start(trainer):
    experiment = comet_ml.Experiment(project_name=trainer.args.project or "YOLOv8",)
    experiment.log_parameters(dict(trainer.args))


def on_train_epoch_end(trainer):
    experiment = comet_ml.get_global_experiment()
    experiment.log_metrics(trainer.label_loss_items(trainer.tloss, prefix="train"), step=trainer.epoch + 1)
    if trainer.epoch == 1:
        for f in trainer.save_dir.glob('train_batch*.jpg'):
            experiment.log_image(f, name=f.stem, step=trainer.epoch + 1)


def on_fit_epoch_end(trainer):
    experiment = comet_ml.get_global_experiment()
    experiment.log_metrics(trainer.metrics, step=trainer.epoch + 1)
    if trainer.epoch == 0:
        model_info = {
            "model/parameters": get_num_params(trainer.model),
            "model/GFLOPs": round(get_flops(trainer.model), 3),
            "model/speed(ms)": round(trainer.validator.speed[1], 3)}
        experiment.log_metrics(model_info, step=trainer.epoch + 1)


def on_train_end(trainer):
    experiment = comet_ml.get_global_experiment()
    experiment.log_model("YOLOv8", file_or_folder=trainer.best, file_name="best.pt", overwrite=True)


callbacks = {
    "on_pretrain_routine_start": on_pretrain_routine_start,
    "on_train_epoch_end": on_train_epoch_end,
    "on_fit_epoch_end": on_fit_epoch_end,
    "on_train_end": on_train_end} if comet_ml else {}