import gradio as gr | |
from transformers import pipeline | |
# Use a different LLM (GPT-Neo instead of GPT-2) | |
generator = pipeline('text-generation', model='EleutherAI/gpt-neo-125M') | |
def generate_text(prompt): | |
generated = generator( | |
prompt, | |
max_length=20, # Limit response length | |
do_sample=False, # Make output deterministic | |
temperature=0.1, # Reduce randomness | |
repetition_penalty=2.0 # Prevent repeating words | |
) | |
return generated[0]['generated_text'] | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=generate_text, | |
inputs="text", | |
outputs="text", | |
title="Ask Any Question", | |
description="Ask a question and get an answer using GPT-Neo." | |
) | |
iface.launch() | |