import gradio as gr | |
from transformers import pipeline | |
# Create a text-generation pipeline using GPT-2 | |
generator = pipeline('text-generation', model='gpt2') | |
def generate_text(prompt): | |
# Adjust temperature to make output more focused | |
generated = generator( | |
prompt, | |
max_length=50, | |
num_return_sequences=1, | |
temperature=0.2, # Lower temperature for less randomness | |
top_k=50, # Optional: limit the number of choices | |
top_p=0.95 # Optional: nucleus sampling | |
) | |
return generated[0]['generated_text'] | |
# Create a Gradio interface with one text input and one text output | |
iface = gr.Interface( | |
fn=generate_text, | |
inputs="text", | |
outputs="text", | |
title="Simple LLM with Hugging Face & Gradio", | |
description="Enter a prompt and get text generated by a basic GPT-2 model." | |
) | |
# Launch the interface | |
iface.launch() | |