Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,46 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
-
#
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
inputs=[
|
7 |
-
gr.
|
8 |
-
gr.
|
9 |
-
gr.inputs.Slider(minimum=0.1, maximum=1.0, step=0.1, default=0.7, label="Temperature")
|
10 |
],
|
11 |
-
outputs=gr.
|
12 |
-
title="
|
13 |
-
description="
|
|
|
14 |
)
|
15 |
|
16 |
-
|
17 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
|
4 |
+
# **1. Load a better QA model** – using RoBERTa-large for higher accuracy.
|
5 |
+
# (You can switch to 'deepset/roberta-base-squad2-distilled' for speed or others as needed.)
|
6 |
+
MODEL_NAME = "deepset/roberta-large-squad2"
|
7 |
+
qa_pipeline = pipeline(
|
8 |
+
"question-answering",
|
9 |
+
model=MODEL_NAME,
|
10 |
+
tokenizer=MODEL_NAME
|
11 |
+
# You can add device=0 here if using a GPU for faster inference
|
12 |
+
)
|
13 |
+
|
14 |
+
# Define the QA function for Gradio
|
15 |
+
def answer_question(question, context):
|
16 |
+
# **2. Use the pipeline with improved parameters**
|
17 |
+
result = qa_pipeline(
|
18 |
+
question=question,
|
19 |
+
context=context,
|
20 |
+
handle_impossible_answer=True, # allow "no answer" if applicable
|
21 |
+
top_k=1, # we only want the best answer
|
22 |
+
max_answer_len=30 # increase if expecting longer answers
|
23 |
+
)
|
24 |
+
answer = result.get("answer", "").strip()
|
25 |
+
score = result.get("score", 0.0)
|
26 |
+
# **3. Handle cases where no answer is found or confidence is low**
|
27 |
+
if answer == "" or score < 0.1:
|
28 |
+
# If the model found no answer or is very unsure, return a fallback message
|
29 |
+
return "🤔 I’m not sure – the model couldn’t find a clear answer in the text."
|
30 |
+
return answer
|
31 |
+
|
32 |
+
# **4. Set up Gradio interface** with appropriate input/output components
|
33 |
+
interface = gr.Interface(
|
34 |
+
fn=answer_question,
|
35 |
inputs=[
|
36 |
+
gr.components.Textbox(lines=2, label="Question"),
|
37 |
+
gr.components.Textbox(lines=10, label="Context")
|
|
|
38 |
],
|
39 |
+
outputs=gr.components.Textbox(label="Answer"),
|
40 |
+
title="Question Answering Demo",
|
41 |
+
description="Ask a question and get an answer from the provided context. " \
|
42 |
+
"Supports unanswerable questions."
|
43 |
)
|
44 |
|
45 |
+
if __name__ == "__main__":
|
46 |
+
interface.launch()
|