Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,26 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
4 |
-
# Create a text-generation pipeline using GPT-2
|
5 |
generator = pipeline('text-generation', model='gpt2')
|
6 |
|
7 |
def generate_text(prompt):
|
8 |
-
# Use a lower temperature and limit the max_length for concise output
|
9 |
generated = generator(
|
10 |
prompt,
|
11 |
-
max_length=30,
|
12 |
-
do_sample=
|
13 |
-
temperature=0.
|
|
|
|
|
14 |
)
|
15 |
return generated[0]['generated_text']
|
16 |
|
17 |
-
# Create a Gradio interface
|
18 |
iface = gr.Interface(
|
19 |
fn=generate_text,
|
20 |
inputs="text",
|
21 |
outputs="text",
|
22 |
title="Simple LLM with Hugging Face & Gradio",
|
23 |
-
description="Enter a prompt and get a concise
|
24 |
)
|
25 |
|
26 |
-
# Launch the interface
|
27 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
4 |
+
# Create a text-generation pipeline using GPT-2
|
5 |
generator = pipeline('text-generation', model='gpt2')
|
6 |
|
7 |
def generate_text(prompt):
|
|
|
8 |
generated = generator(
|
9 |
prompt,
|
10 |
+
max_length=30, # Limit the output length
|
11 |
+
do_sample=True, # Enable sampling for more natural responses
|
12 |
+
temperature=0.3, # Lower temperature for less randomness
|
13 |
+
repetition_penalty=1.5, # Penalize repeated tokens
|
14 |
+
no_repeat_ngram_size=2 # Avoid repeating any 2-word sequences
|
15 |
)
|
16 |
return generated[0]['generated_text']
|
17 |
|
|
|
18 |
iface = gr.Interface(
|
19 |
fn=generate_text,
|
20 |
inputs="text",
|
21 |
outputs="text",
|
22 |
title="Simple LLM with Hugging Face & Gradio",
|
23 |
+
description="Enter a prompt and get a concise, factual answer."
|
24 |
)
|
25 |
|
|
|
26 |
iface.launch()
|