import gradio as gr from transformers import pipeline # Create a text-generation pipeline using GPT-2 generator = pipeline('text-generation', model='gpt2') def generate_text(prompt): generated = generator( prompt, max_length=30, # Limit the output length do_sample=True, # Enable sampling for more natural responses temperature=0.3, # Lower temperature for less randomness repetition_penalty=1.5, # Penalize repeated tokens no_repeat_ngram_size=2 # Avoid repeating any 2-word sequences ) return generated[0]['generated_text'] iface = gr.Interface( fn=generate_text, inputs="text", outputs="text", title="Simple LLM with Hugging Face & Gradio", description="Enter a prompt and get a concise, factual answer." ) iface.launch()