import gradio as gr from transformers import pipeline # Create a text-generation pipeline using GPT-2 generator = pipeline('text-generation', model='gpt2') def generate_text(prompt): # Adjust temperature to make output more focused generated = generator( prompt, max_length=50, num_return_sequences=1, temperature=0.2, # Lower temperature for less randomness top_k=50, # Optional: limit the number of choices top_p=0.95 # Optional: nucleus sampling ) return generated[0]['generated_text'] # Create a Gradio interface with one text input and one text output iface = gr.Interface( fn=generate_text, inputs="text", outputs="text", title="Simple LLM with Hugging Face & Gradio", description="Enter a prompt and get text generated by a basic GPT-2 model." ) # Launch the interface iface.launch()