create app.py file
Browse files
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
2 |
+
model = AutoModelForSequenceClassification.from_pretrained("savasy/bert-base-turkish-sentiment-cased")
|
3 |
+
tokenizer = AutoTokenizer.from_pretrained("savasy/bert-base-turkish-sentiment-cased")
|
4 |
+
sa= pipeline("sentiment-analysis", tokenizer=tokenizer, model=model)
|
5 |
+
|
6 |
+
def adjust(x):
|
7 |
+
if x<0:
|
8 |
+
return 2*x+1
|
9 |
+
return 2*x-1
|
10 |
+
|
11 |
+
def sa2(s):
|
12 |
+
res= sa(s)
|
13 |
+
return [adjust(-1*r['score']) if r['label']=='negative' else adjust(r['score']) for r in res ]
|
14 |
+
|
15 |
+
|
16 |
+
import pandas as pd
|
17 |
+
|
18 |
+
import matplotlib.pyplot as plt
|
19 |
+
def grfunc(comments):
|
20 |
+
df=pd.DataFrame()
|
21 |
+
c2=[s for s in comments.split("\n") if len(s.split())>2]
|
22 |
+
df["scores"]= sa2(c2)
|
23 |
+
df.plot(kind='hist')
|
24 |
+
return plt.gcf()
|
25 |
+
|
26 |
+
import gradio as gr
|
27 |
+
|
28 |
+
iface = gr.Interface(
|
29 |
+
fn=grfunc,
|
30 |
+
inputs=gr.inputs.Textbox(placeholder="put your sentences line by line", lines=5),
|
31 |
+
outputs="plot")
|
32 |
+
iface.launch()
|