from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline model = AutoModelForSequenceClassification.from_pretrained("savasy/bert-base-turkish-sentiment-cased") tokenizer = AutoTokenizer.from_pretrained("savasy/bert-base-turkish-sentiment-cased") sa= pipeline("sentiment-analysis", tokenizer=tokenizer, model=model) def adjust(x): if x<0: return 2*x+1 return 2*x-1 def sa2(s): res= sa(s) return [adjust(-1*r['score']) if r['label']=='negative' else adjust(r['score']) for r in res ] def get_examples(): #return [e for e in open("examplesTR.csv").readlines()] return ["Bu filmi beğenmedim\n bu filmi beğendim\n ceketin çok güzel\n bugün ne yesek"] import pandas as pd import matplotlib.pyplot as plt def grfunc(comments): df=pd.DataFrame() c2=[s.strip() for s in comments.split("\n") if len(s.split())>2] df["scores"]= sa2(c2) df.plot(kind='hist') return plt.gcf() import gradio as gr iface = gr.Interface( fn=grfunc, inputs=gr.inputs.Textbox(placeholder="put your sentences line by line", lines=5), outputs="plot", examples=get_examples()) iface.launch()