File size: 5,679 Bytes
1cc6224 819fc71 1cc6224 819fc71 ff9d83f 1cc6224 819fc71 1cc6224 819fc71 1cc6224 819fc71 1cc6224 819fc71 1cc6224 819fc71 1cc6224 819fc71 1cc6224 d704234 1cc6224 819fc71 ff9d83f 1cc6224 819fc71 1cc6224 ff9d83f 1cc6224 fb6004b 819fc71 fb6004b 819fc71 1cc6224 333cc78 3001060 333cc78 1cc6224 3e5d9cc 1cc6224 531923c 1cc6224 819fc71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os
import random # Import the random library
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt" # Path to the file storing chess-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'
openai.api_key = os.environ["OPENAI_API_KEY"]
system_message = "You put together outfits by taking keywords such as modest or not modest,comfort level (1=comfortable, 2=everyday wear, 3=formal), color, and occasion inputted by users and outputting a list of simple clothing pieces (consisting of a top, bottom, and possibly accessories and outerwear) and a Pinterest link to the outfit created, resulting in a cohesive outfit."
# Initial system message to set the behavior of the assistant
messages = [{"role": "system", "content": system_message}]
# Attempt to load the necessary models and provide feedback on success or failure
try:
retrieval_model = SentenceTransformer(retrieval_model_name)
print("Models loaded successfully.")
except Exception as e:
print(f"Failed to load models: {e}")
def load_and_preprocess_text(filename):
"""
Load and preprocess text from a file, removing empty lines and stripping whitespace.
"""
try:
with open(filename, 'r', encoding='utf-8') as file:
segments = [line.strip() for line in file if line.strip()]
print("Text loaded and preprocessed successfully.")
return segments
except Exception as e:
print(f"Failed to load or preprocess text: {e}")
return []
segments = load_and_preprocess_text(filename)
def find_relevant_segments(user_query, segments):
"""
Find the most relevant text segments for a user's query using cosine similarity among sentence embeddings.
"""
try:
# Lowercase the query for better matching
lower_query = user_query.lower()
# Encode the query and the segments
query_embedding = retrieval_model.encode(lower_query)
segment_embeddings = retrieval_model.encode(segments)
# Compute cosine similarities between the query and the segments
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
# Get indices of the most similar segments
best_indices = similarities.topk(5).indices.tolist()
# Return the most relevant segments
return [segments[idx] for idx in best_indices]
except Exception as e:
print(f"Error in finding relevant segments: {e}")
return []
def generate_response(user_query, relevant_segments):
"""
Generate a response emphasizing the bot's capability in providing fashion information.
"""
try:
# Randomly select an outfit from the relevant segments
random_segment = random.choice(relevant_segments)
user_message = f"Of course! Here are your outfit suggestions and some sustainable brands you can buy from: {random_segment}"
# Append user's message to messages list
messages.append({"role": "user", "content": user_message})
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=150,
temperature=0.4,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
# Extract the response text
output_text = response['choices'][0]['message']['content'].strip()
# Append assistant's message to messages list for context
messages.append({"role": "assistant", "content": output_text})
return output_text
except Exception as e:
print(f"Error in generating response: {e}")
return f"Error in generating response: {e}"
def query_model(question):
"""
Process a question, find relevant information, and generate a response.
"""
if question == "":
return "Welcome to Savvy! Use the word bank to describe the outfit you would like generated."
relevant_segments = find_relevant_segments(question, segments)
if not relevant_segments:
return "I'm sorry. Could you be more specific? Check your spelling and make sure to use words from the bank."
response = generate_response(question, relevant_segments)
return response
# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
"""
topics = """
"""
pinterest = """
<a data-pin-do="embedPin" href="https://www.pinterest.com/pin/219620919322613000/"></a>
<script async type="text/javascript" src="https://assets.pinterest.com/js/pinit.js">
"""
# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
gr.Markdown(welcome_message) # Display the formatted welcome message
with gr.Row():
with gr.Column():
gr.Markdown(topics) # Show the topics on the left side
question = gr.Textbox(label="Your question", placeholder="What do you want to ask about?")
answer = gr.Textbox(label="Sustainabot Response", placeholder="Sustainabot will respond here...", interactive=False, lines=10)
submit_button = gr.Button("Submit")
submit_button.click(fn=query_model, inputs=question, outputs=answer)
# with gr.Row():
# with gr.Column():
# Launch the Gradio app to allow user interaction
demo.launch(share=True) |