File size: 5,679 Bytes
1cc6224
 
 
 
819fc71
1cc6224
 
 
 
 
 
 
 
 
819fc71
ff9d83f
 
 
1cc6224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
819fc71
1cc6224
819fc71
1cc6224
 
 
 
 
 
 
 
 
 
 
 
819fc71
 
1cc6224
819fc71
 
1cc6224
819fc71
 
1cc6224
819fc71
1cc6224
d704234
1cc6224
 
819fc71
 
 
 
ff9d83f
 
 
 
1cc6224
 
 
 
819fc71
1cc6224
 
 
 
ff9d83f
 
 
 
 
 
 
 
 
1cc6224
 
 
 
 
 
 
 
 
fb6004b
819fc71
 
fb6004b
819fc71
1cc6224
 
 
 
 
 
 
333cc78
 
 
3001060
333cc78
1cc6224
 
 
 
 
 
 
 
 
3e5d9cc
1cc6224
 
531923c
 
 
1cc6224
 
819fc71
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os
import random  # Import the random library

os.environ["TOKENIZERS_PARALLELISM"] = "false"

# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt"  # Path to the file storing chess-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'

openai.api_key = os.environ["OPENAI_API_KEY"]

system_message = "You put together outfits by taking keywords such as modest or not modest,comfort level (1=comfortable, 2=everyday wear, 3=formal), color, and occasion inputted by users and outputting a list of simple clothing pieces (consisting of a top, bottom, and possibly accessories and outerwear) and a Pinterest link to the outfit created, resulting in a cohesive outfit."
# Initial system message to set the behavior of the assistant
messages = [{"role": "system", "content": system_message}]

# Attempt to load the necessary models and provide feedback on success or failure
try:
    retrieval_model = SentenceTransformer(retrieval_model_name)
    print("Models loaded successfully.")
except Exception as e:
    print(f"Failed to load models: {e}")

def load_and_preprocess_text(filename):
    """
    Load and preprocess text from a file, removing empty lines and stripping whitespace.
    """
    try:
        with open(filename, 'r', encoding='utf-8') as file:
            segments = [line.strip() for line in file if line.strip()]
        print("Text loaded and preprocessed successfully.")
        return segments
    except Exception as e:
        print(f"Failed to load or preprocess text: {e}")
        return []

segments = load_and_preprocess_text(filename)

def find_relevant_segments(user_query, segments):
    """
    Find the most relevant text segments for a user's query using cosine similarity among sentence embeddings.
    """
    try:
        # Lowercase the query for better matching
        lower_query = user_query.lower()
        
        # Encode the query and the segments
        query_embedding = retrieval_model.encode(lower_query)
        segment_embeddings = retrieval_model.encode(segments)
        
        # Compute cosine similarities between the query and the segments
        similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
        
        # Get indices of the most similar segments
        best_indices = similarities.topk(5).indices.tolist()
        
        # Return the most relevant segments
        return [segments[idx] for idx in best_indices]
    except Exception as e:
        print(f"Error in finding relevant segments: {e}")
        return []

def generate_response(user_query, relevant_segments):
    """
    Generate a response emphasizing the bot's capability in providing fashion information.
    """
    try:
        # Randomly select an outfit from the relevant segments
        random_segment = random.choice(relevant_segments)
        
        user_message = f"Of course! Here are your outfit suggestions and some sustainable brands you can buy from: {random_segment}"

        # Append user's message to messages list
        messages.append({"role": "user", "content": user_message})
        
        response = openai.ChatCompletion.create(
            model="gpt-3.5-turbo",
            messages=messages,
            max_tokens=150,
            temperature=0.4,
            top_p=1,
            frequency_penalty=0,
            presence_penalty=0
        )
        
        # Extract the response text
        output_text = response['choices'][0]['message']['content'].strip()
        
        # Append assistant's message to messages list for context
        messages.append({"role": "assistant", "content": output_text})
        
        return output_text
        
    except Exception as e:
        print(f"Error in generating response: {e}")
        return f"Error in generating response: {e}"

def query_model(question):
    """
    Process a question, find relevant information, and generate a response.
    """
    if question == "":
        return "Welcome to Savvy! Use the word bank to describe the outfit you would like generated."
    relevant_segments = find_relevant_segments(question, segments)
    if not relevant_segments:
        return "I'm sorry. Could you be more specific? Check your spelling and make sure to use words from the bank."
    response = generate_response(question, relevant_segments)
    return response

# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
"""

topics = """
"""

pinterest = """
<a data-pin-do="embedPin" href="https://www.pinterest.com/pin/219620919322613000/"></a>
    <script async type="text/javascript" src="https://assets.pinterest.com/js/pinit.js">
"""

# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
    gr.Markdown(welcome_message)  # Display the formatted welcome message
    with gr.Row():
        with gr.Column():
            gr.Markdown(topics)  # Show the topics on the left side
            question = gr.Textbox(label="Your question", placeholder="What do you want to ask about?")
            answer = gr.Textbox(label="Sustainabot Response", placeholder="Sustainabot will respond here...", interactive=False, lines=10)
            submit_button = gr.Button("Submit")
            submit_button.click(fn=query_model, inputs=question, outputs=answer)
    # with gr.Row():
    #     with gr.Column():
            

# Launch the Gradio app to allow user interaction
demo.launch(share=True)