Spaces:
Runtime error
Runtime error
File size: 15,333 Bytes
eeb9f62 91025ab eeb9f62 417eb3c eeb9f62 417eb3c eeb9f62 ec46884 eeb9f62 417eb3c eeb9f62 417eb3c eeb9f62 0876e5f eeb9f62 417eb3c 0876e5f eeb9f62 417eb3c eeb9f62 417eb3c eeb9f62 417eb3c eeb9f62 417eb3c eeb9f62 2d8d266 eeb9f62 2d8d266 eeb9f62 2d8d266 eeb9f62 417eb3c eeb9f62 417eb3c eeb9f62 417eb3c eeb9f62 2d8d266 eeb9f62 417eb3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
import os
import json
import re
from sentence_transformers import SentenceTransformer, CrossEncoder
from huggingface_hub import hf_hub_download
import hnswlib
import numpy as np
from typing import Iterator
import gradio as gr
import pandas as pd
import torch
from easyllm.clients import huggingface
from transformers import AutoTokenizer
huggingface.prompt_builder = "llama2"
huggingface.api_key = os.environ["HUGGINGFACE_TOKEN"]
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = 4000
EMBED_DIM = 1024
K = 10
EF = 100
COSINE_THRESHOLD = 0.7
SEARCH_INDEX = hf_hub_download(repo_id="sayakpaul/diffusers-qa-chatbot-artifacts", filename="search_index.bin", repo_type="dataset")
EMBEDDINGS_FILE = hf_hub_download(repo_id="sayakpaul/diffusers-qa-chatbot-artifacts", filename="embeddings.npy", repo_type="dataset")
DOCUMENT_DATASET = hf_hub_download(repo_id="sayakpaul/diffusers-qa-chatbot-artifacts", filename="chunked_data.parquet", repo_type="dataset")
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
print("Running on device:", torch_device)
print("CPU threads:", torch.get_num_threads())
model_id = "meta-llama/Llama-2-70b-chat-hf"
biencoder = SentenceTransformer("intfloat/e5-large-v2", device=torch_device)
cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-12-v2", max_length=512, device=torch_device)
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=os.environ["HUGGINGFACE_TOKEN"])
def create_qa_prompt(query, relevant_chunks):
stuffed_context = " ".join(relevant_chunks)
return f"""\
Use the following pieces of context given in to answer the question at the end. \
If you don't know the answer, just say that you don't know, don't try to make up an answer. \
Keep the answer short and succinct.
Context: {stuffed_context}
Question: {query}
Helpful Answer: \
"""
def create_condense_question_prompt(question, chat_history):
return f"""\
Given the following conversation and a follow up question, \
rephrase the follow up question to be a standalone question in its original language. \
Output the json object with single field `question` and value being the rephrased standalone question.
Only output json object and nothing else.
Chat History:
{chat_history}
Follow Up Input: {question}
"""
def get_prompt(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> str:
texts = [f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n"]
# The first user input is _not_ stripped
do_strip = False
for user_input, response in chat_history:
user_input = user_input.strip() if do_strip else user_input
do_strip = True
texts.append(f"{user_input} [/INST] {response.strip()} </s><s>[INST] ")
message = message.strip() if do_strip else message
texts.append(f"{message} [/INST]")
return "".join(texts)
def get_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> int:
prompt = get_prompt(message, chat_history, system_prompt)
input_ids = tokenizer([prompt], return_tensors="np", add_special_tokens=False)["input_ids"]
return input_ids.shape[-1]
# https://www.philschmid.de/llama-2#how-to-prompt-llama-2-chat
def get_completion(
prompt,
system_prompt=None,
model=model_id,
max_new_tokens=1024,
temperature=0.2,
top_p=0.95,
top_k=50,
stream=False,
debug=False,
):
if temperature < 1e-2:
temperature = 1e-2
messages = []
if system_prompt is not None:
messages.append({"role": "system", "content": system_prompt})
messages.append({"role": "user", "content": prompt})
response = huggingface.ChatCompletion.create(
model=model,
messages=messages,
temperature=temperature, # this is the degree of randomness of the model's output
max_tokens=max_new_tokens, # this is the number of new tokens being generated
top_p=top_p,
top_k=top_k,
stream=stream,
debug=debug,
)
return response["choices"][0]["message"]["content"] if not stream else response
# load the index for the Diffusers docs
def load_hnsw_index(index_file):
# Load the HNSW index from the specified file
index = hnswlib.Index(space="ip", dim=EMBED_DIM)
index.load_index(index_file)
return index
# create the index for the Diffusers docs from numpy embeddings
# avoid the arch mismatches when creating search index
def create_hnsw_index(embeddings_file, M=16, efC=100):
embeddings = np.load(embeddings_file)
# Create the HNSW index
num_dim = embeddings.shape[1]
ids = np.arange(embeddings.shape[0])
index = hnswlib.Index(space="ip", dim=num_dim)
index.init_index(max_elements=embeddings.shape[0], ef_construction=efC, M=M)
index.add_items(embeddings, ids)
return index
def create_query_embedding(query):
# Encode the query to get its embedding
embedding = biencoder.encode([query], normalize_embeddings=True)[0]
return embedding
def find_nearest_neighbors(query_embedding):
search_index.set_ef(EF)
# Find the k-nearest neighbors for the query embedding
labels, distances = search_index.knn_query(query_embedding, k=K)
labels = [label for label, distance in zip(labels[0], distances[0]) if (1 - distance) >= COSINE_THRESHOLD]
relevant_chunks = data_df.iloc[labels]["chunk_content"].tolist()
return relevant_chunks
def rerank_chunks_with_cross_encoder(query, chunks):
# Create a list of tuples, each containing a query-chunk pair
pairs = [(query, chunk) for chunk in chunks]
# Get scores for each query-chunk pair using the cross encoder
scores = cross_encoder.predict(pairs)
# Sort the chunks based on their scores in descending order
sorted_chunks = [chunk for _, chunk in sorted(zip(scores, chunks), reverse=True)]
return sorted_chunks
def generate_condensed_query(query, history):
chat_history = ""
for turn in history:
chat_history += f"Human: {turn[0]}\n"
chat_history += f"Assistant: {turn[1]}\n"
condense_question_prompt = create_condense_question_prompt(query, chat_history)
condensed_question = json.loads(get_completion(condense_question_prompt, max_new_tokens=64, temperature=0))
return condensed_question["question"]
DEFAULT_SYSTEM_PROMPT = """\
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\
"""
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = 4000
DESCRIPTION = """
# 🧨 Diffusers Docs QA Chatbot 🤗
"""
DESCRIPTION += "This application is almost exactly copied from [smangrul/Diffusers-Docs-QA-Chatbot](https://huggingface.co/spaces/smangrul/Diffusers-Docs-QA-Chatbot).\n Related code: [pacman100/DHS-LLM-Workshop](https://github.com/pacman100/DHS-LLM-Workshop/blob/main/6_Module/)."
LICENSE = """
<p/>
---
As a derivate work of [Llama-2-70b-chat](https://huggingface.co/meta-llama/Llama-2-70b-chat) by Meta,
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-70b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-70b-chat/blob/main/USE_POLICY.md).
"""
def clear_and_save_textbox(message: str) -> tuple[str, str]:
return "", message
def display_input(message: str, history: list[tuple[str, str]]) -> list[tuple[str, str]]:
history.append((message, ""))
return history
def delete_prev_fn(history: list[tuple[str, str]]) -> tuple[list[tuple[str, str]], str]:
try:
message, _ = history.pop()
except IndexError:
message = ""
return history, message or ""
def wrap_html_code(text):
pattern = r"<.*?>"
matches = re.findall(pattern, text)
if len(matches) > 0:
return f"```{text}```"
else:
return text
def generate(
message: str,
history_with_input: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int,
temperature: float,
top_p: float,
top_k: int,
) -> Iterator[list[tuple[str, str]]]:
if max_new_tokens > MAX_MAX_NEW_TOKENS:
raise ValueError
history = history_with_input[:-1]
if len(history) > 0:
condensed_query = generate_condensed_query(message, history)
print(f"{condensed_query=}")
else:
condensed_query = message
query_embedding = create_query_embedding(condensed_query)
relevant_chunks = find_nearest_neighbors(query_embedding)
reranked_relevant_chunks = rerank_chunks_with_cross_encoder(condensed_query, relevant_chunks)
qa_prompt = create_qa_prompt(condensed_query, reranked_relevant_chunks)
print(f"{qa_prompt=}")
generator = get_completion(
qa_prompt,
system_prompt=system_prompt,
stream=True,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_k=top_k,
top_p=top_p,
)
output = ""
for idx, response in enumerate(generator):
token = response["choices"][0]["delta"].get("content", "") or ""
output += token
if idx == 0:
history.append((message, output))
else:
history[-1] = (message, output)
history = [
(wrap_html_code(history[i][0].strip()), wrap_html_code(history[i][1].strip()))
for i in range(0, len(history))
]
yield history
return history
def process_example(message: str) -> tuple[str, list[tuple[str, str]]]:
generator = generate(message, [], DEFAULT_SYSTEM_PROMPT, 1024, 0.2, 0.95, 50)
for x in generator:
pass
return "", x
def check_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> None:
input_token_length = get_input_token_length(message, chat_history, system_prompt)
if input_token_length > MAX_INPUT_TOKEN_LENGTH:
raise gr.Error(
f"The accumulated input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}). Clear your chat history and try again."
)
search_index = load_hnsw_index(SEARCH_INDEX) # create_hnsw_index(EMBEDDINGS_FILE)
data_df = pd.read_parquet(DOCUMENT_DATASET).reset_index()
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Group():
chatbot = gr.Chatbot(label="Chatbot")
with gr.Row():
textbox = gr.Textbox(
container=False,
show_label=False,
placeholder="Type a message...",
scale=10,
)
submit_button = gr.Button("Submit", variant="primary", scale=1, min_width=0)
with gr.Row():
retry_button = gr.Button("🔄 Retry", variant="secondary")
undo_button = gr.Button("↩️ Undo", variant="secondary")
clear_button = gr.Button("🗑️ Clear", variant="secondary")
saved_input = gr.State()
with gr.Accordion(label="Advanced options", open=False):
system_prompt = gr.Textbox(label="System prompt", value=DEFAULT_SYSTEM_PROMPT, lines=6)
max_new_tokens = gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
)
temperature = gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.2,
)
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.95,
)
top_k = gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
)
gr.Examples(
examples=[
"What is Diffusers?",
"What is Stable Diffusion XL?",
"How can I perform text-to-image generation with Kandinsky?",
"How to use LoRA with IP-Adapters?",
"How to use ControlNet with LCM-LoRA?",
],
inputs=textbox,
outputs=[textbox, chatbot],
# fn=process_example,
cache_examples=False,
)
gr.Markdown(LICENSE)
textbox.submit(
fn=clear_and_save_textbox,
inputs=textbox,
outputs=[textbox, saved_input],
api_name=False,
queue=False,
).then(fn=display_input, inputs=[saved_input, chatbot], outputs=chatbot, api_name=False, queue=False,).then(
fn=check_input_token_length,
inputs=[saved_input, chatbot, system_prompt],
api_name=False,
queue=False,
).success(
fn=generate,
inputs=[
saved_input,
chatbot,
system_prompt,
max_new_tokens,
temperature,
top_p,
top_k,
],
outputs=chatbot,
api_name=False,
)
button_event_preprocess = (
submit_button.click(
fn=clear_and_save_textbox,
inputs=textbox,
outputs=[textbox, saved_input],
api_name=False,
queue=False,
)
.then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
)
.then(
fn=check_input_token_length,
inputs=[saved_input, chatbot, system_prompt],
api_name=False,
queue=False,
)
.success(
fn=generate,
inputs=[
saved_input,
chatbot,
system_prompt,
max_new_tokens,
temperature,
top_p,
top_k,
],
outputs=chatbot,
api_name=False,
)
)
retry_button.click(
fn=delete_prev_fn,
inputs=chatbot,
outputs=[chatbot, saved_input],
api_name=False,
queue=False,
).then(fn=display_input, inputs=[saved_input, chatbot], outputs=chatbot, api_name=False, queue=False,).then(
fn=generate,
inputs=[
saved_input,
chatbot,
system_prompt,
max_new_tokens,
temperature,
top_p,
top_k,
],
outputs=chatbot,
api_name=False,
)
undo_button.click(
fn=delete_prev_fn,
inputs=chatbot,
outputs=[chatbot, saved_input],
api_name=False,
queue=False,
).then(
fn=lambda x: x,
inputs=[saved_input],
outputs=textbox,
api_name=False,
queue=False,
)
clear_button.click(
fn=lambda: ([], ""),
outputs=[chatbot, saved_input],
queue=False,
api_name=False,
)
demo.queue(max_size=20).launch(debug=True, share=False) |