sayedM commited on
Commit
ff51b2a
Β·
verified Β·
1 Parent(s): b83ba6f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -48
app.py CHANGED
@@ -5,14 +5,19 @@ import gradio as gr
5
  import numpy as np
6
  from PIL import Image, ImageDraw
7
  import torchvision.transforms.functional as TF
8
- from matplotlib import colormaps
9
- from transformers import AutoModel # πŸ’‘ Import AutoModel
10
 
11
  # ----------------------------
12
  # Configuration
13
  # ----------------------------
14
- # πŸ’‘ Use the full, correct model ID from the Hugging Face Hub
15
- MODEL_ID = "facebook/dinov3-vith16plus-pretrain-lvd1689m"
 
 
 
 
 
16
  PATCH_SIZE = 16
17
  DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
18
 
@@ -20,41 +25,41 @@ DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
20
  IMAGENET_MEAN = (0.485, 0.456, 0.406)
21
  IMAGENET_STD = (0.229, 0.224, 0.225)
22
 
 
 
 
23
  # ----------------------------
24
  # Model Loading (Hugging Face Hub)
25
  # ----------------------------
26
- def load_model_from_hub():
27
- """Loads the DINOv3 model from the Hugging Face Hub."""
28
- print(f"Loading model '{MODEL_ID}' from Hugging Face Hub...")
29
  try:
30
- # This will use the HF_TOKEN secret if you set it in your Space settings.
31
  token = os.environ.get("HF_TOKEN")
32
- # trust_remote_code is necessary for DINOv3
33
- model = AutoModel.from_pretrained(MODEL_ID, token=token, trust_remote_code=True)
34
  model.to(DEVICE).eval()
35
  print(f"βœ… Model loaded successfully on device: {DEVICE}")
36
  return model
37
  except Exception as e:
38
  print(f"❌ Failed to load model: {e}")
39
- # This will display a clear error message in the Gradio interface
40
  raise gr.Error(
41
- f"Could not load model '{MODEL_ID}'. "
42
  "This is a gated model. Please ensure you have accepted the terms on its Hugging Face page "
43
  "and set your HF_TOKEN as a secret in your Space settings. "
44
  f"Original error: {e}"
45
  )
46
 
47
- # Load the model globally when the app starts
48
- model = load_model_from_hub()
 
 
 
 
49
 
50
  # ----------------------------
51
- # Helper Functions (resize, viz)
52
  # ----------------------------
53
  def resize_to_grid(img: Image.Image, long_side: int, patch: int) -> torch.Tensor:
54
- """
55
- Resizes so max(h,w)=long_side (keeping aspect), then rounds each side UP to a multiple of 'patch'.
56
- Returns CHW float tensor in [0,1].
57
- """
58
  w, h = img.size
59
  scale = long_side / max(h, w)
60
  new_h = max(patch, int(round(h * scale)))
@@ -110,7 +115,8 @@ def patch_neighborhood_box(r: int, c: int, Hp: int, Wp: int, rad: int, patch: in
110
  # Feature Extraction (using transformers)
111
  # ----------------------------
112
  @torch.inference_mode()
113
- def extract_image_features(image_pil: Image.Image, target_long_side: int):
 
114
  """
115
  Extracts patch features from an image using the loaded Hugging Face model.
116
  """
@@ -118,23 +124,19 @@ def extract_image_features(image_pil: Image.Image, target_long_side: int):
118
  t_norm = TF.normalize(t, IMAGENET_MEAN, IMAGENET_STD).unsqueeze(0).to(DEVICE)
119
  _, _, H, W = t_norm.shape
120
  Hp, Wp = H // PATCH_SIZE, W // PATCH_SIZE
121
-
122
- # πŸ’‘ Use the standard forward pass of the transformers model
123
  outputs = model(t_norm)
124
-
125
- # πŸ’‘ The model output includes a [CLS] token AND 4 register tokens.
126
- # We must skip all 5 to get only the patch embeddings.
127
- n_special_tokens = 5
128
  patch_embeddings = outputs.last_hidden_state.squeeze(0)[n_special_tokens:, :]
129
-
130
- # L2-normalize the features to prepare for cosine similarity
131
  X = F.normalize(patch_embeddings, p=2, dim=-1)
132
 
133
  img_resized = TF.to_pil_image(t)
134
  return {"X": X, "Hp": Hp, "Wp": Wp, "img": img_resized}
135
 
136
  # ----------------------------
137
- # Similarity inside the same image (No changes needed here)
138
  # ----------------------------
139
  def click_to_similarity_in_same_image(
140
  state: dict,
@@ -206,15 +208,21 @@ def click_to_similarity_in_same_image(
206
  # ----------------------------
207
  with gr.Blocks(theme=gr.themes.Soft(), title="DINOv3 Single-Image Patch Similarity") as demo:
208
  gr.Markdown("# πŸ¦– DINOv3 Single-Image Patch Similarity")
209
- gr.Markdown("## Running on CPU-only Space, feature extraction after uploading an image can take a moment")
210
- gr.Markdown("1. Upload an image. 2. Click **Process Image**. 3. **Click anywhere on the processed image** to find similar regions.")
211
 
212
  app_state = gr.State()
213
 
214
  with gr.Row():
215
  with gr.Column(scale=1):
 
 
 
 
 
 
216
  input_image = gr.Image(
217
- label="1. Upload Image",
218
  type="pil",
219
  value="https://images.squarespace-cdn.com/content/v1/607f89e638219e13eee71b1e/1684821560422-SD5V37BAG28BURTLIXUQ/michael-sum-LEpfefQf4rU-unsplash.jpg"
220
  )
@@ -223,9 +231,8 @@ with gr.Blocks(theme=gr.themes.Soft(), title="DINOv3 Single-Image Patch Similari
223
  label="Processing Resolution",
224
  info="Higher values = more detail but slower processing",
225
  )
226
- # ⭐️ ADDED BUTTON
227
- process_button = gr.Button("2. Process Image", variant="primary")
228
-
229
  with gr.Row():
230
  alpha = gr.Slider(0.0, 1.0, value=0.55, step=0.05, label="Overlay opacity")
231
  cmap = gr.Dropdown(
@@ -238,19 +245,24 @@ with gr.Blocks(theme=gr.themes.Soft(), title="DINOv3 Single-Image Patch Similari
238
  box_radius = gr.Slider(0, 10, value=1, step=1, label="Box radius (patches)")
239
 
240
  with gr.Row():
241
- marked_image = gr.Image(label="3. Click on this image", interactive=True) # Changed from False to True for clarity
242
  heatmap_output = gr.Image(label="Similarity heatmap", interactive=False)
243
  with gr.Row():
244
  overlay_output = gr.Image(label="Overlay (image βŠ• heatmap)", interactive=False)
245
  overlay_boxes_output = gr.Image(label="Overlay + top-K similar patch boxes", interactive=False)
246
 
247
- # ⭐️ RENAMED FUNCTION
248
- def _process_image(img: Image.Image, long_side: int, progress=gr.Progress(track_tqdm=True)):
249
  if img is None:
250
  gr.Warning("Please upload an image first!")
251
  return None, None
252
- progress(0, desc="Extracting features...")
253
- st = extract_image_features(img, int(long_side))
 
 
 
 
 
254
  progress(1, desc="Done! You can now click on the image.")
255
  return st["img"], st
256
 
@@ -264,18 +276,16 @@ with gr.Blocks(theme=gr.themes.Soft(), title="DINOv3 Single-Image Patch Similari
264
  box_radius_patches=int(box_rad),
265
  )
266
 
267
- # ⭐️ UPDATED EVENT WIRING
268
- inputs_for_processing = [input_image, target_long_side]
269
  outputs_for_processing = [marked_image, app_state]
270
-
271
- # The button now triggers the main processing function
272
  process_button.click(
273
- _process_image,
274
- inputs=inputs_for_processing,
275
  outputs=outputs_for_processing
276
  )
277
-
278
- # The click event on the image remains the same
279
  marked_image.select(
280
  _on_click,
281
  inputs=[app_state, alpha, cmap, exclude_r, topk, box_radius],
 
5
  import numpy as np
6
  from PIL import Image, ImageDraw
7
  import torchvision.transforms.functional as TF
8
+ from matplotlib import colaps
9
+ from transformers import AutoModel
10
 
11
  # ----------------------------
12
  # Configuration
13
  # ----------------------------
14
+ # ⭐ Define available models, with the smaller one as default
15
+ MODELS = {
16
+ "DINOv3 ViT-S+ (Small, Default)": "facebook/dinov3-vits16plus-pretrain-lvd1689m",
17
+ "DINOv3 ViT-H+ (Huge)": "facebook/dinov3-vith16plus-pretrain-lvd1689m",
18
+ }
19
+ DEFAULT_MODEL_NAME = "DINOv3 ViT-S+ (Small, Default)"
20
+
21
  PATCH_SIZE = 16
22
  DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
23
 
 
25
  IMAGENET_MEAN = (0.485, 0.456, 0.406)
26
  IMAGENET_STD = (0.229, 0.224, 0.225)
27
 
28
+ # ⭐ Cache for loaded models to avoid re-downloading
29
+ model_cache = {}
30
+
31
  # ----------------------------
32
  # Model Loading (Hugging Face Hub)
33
  # ----------------------------
34
+ def load_model_from_hub(model_id: str):
35
+ """Loads a DINOv3 model from the Hugging Face Hub."""
36
+ print(f"Loading model '{model_id}' from Hugging Face Hub...")
37
  try:
 
38
  token = os.environ.get("HF_TOKEN")
39
+ model = AutoModel.from_pretrained(model_id, token=token, trust_remote_code=True)
 
40
  model.to(DEVICE).eval()
41
  print(f"βœ… Model loaded successfully on device: {DEVICE}")
42
  return model
43
  except Exception as e:
44
  print(f"❌ Failed to load model: {e}")
 
45
  raise gr.Error(
46
+ f"Could not load model '{model_id}'. "
47
  "This is a gated model. Please ensure you have accepted the terms on its Hugging Face page "
48
  "and set your HF_TOKEN as a secret in your Space settings. "
49
  f"Original error: {e}"
50
  )
51
 
52
+ def get_model(model_name: str):
53
+ """Gets a model from the cache or loads it if not present."""
54
+ model_id = MODELS[model_name]
55
+ if model_id not in model_cache:
56
+ model_cache[model_id] = load_model_from_hub(model_id)
57
+ return model_cache[model_id]
58
 
59
  # ----------------------------
60
+ # Helper Functions (resize, viz) - No changes here
61
  # ----------------------------
62
  def resize_to_grid(img: Image.Image, long_side: int, patch: int) -> torch.Tensor:
 
 
 
 
63
  w, h = img.size
64
  scale = long_side / max(h, w)
65
  new_h = max(patch, int(round(h * scale)))
 
115
  # Feature Extraction (using transformers)
116
  # ----------------------------
117
  @torch.inference_mode()
118
+ # ⭐ Pass the model object as an argument
119
+ def extract_image_features(model, image_pil: Image.Image, target_long_side: int):
120
  """
121
  Extracts patch features from an image using the loaded Hugging Face model.
122
  """
 
124
  t_norm = TF.normalize(t, IMAGENET_MEAN, IMAGENET_STD).unsqueeze(0).to(DEVICE)
125
  _, _, H, W = t_norm.shape
126
  Hp, Wp = H // PATCH_SIZE, W // PATCH_SIZE
127
+
 
128
  outputs = model(t_norm)
129
+
130
+ n_special_tokens = 5
 
 
131
  patch_embeddings = outputs.last_hidden_state.squeeze(0)[n_special_tokens:, :]
132
+
 
133
  X = F.normalize(patch_embeddings, p=2, dim=-1)
134
 
135
  img_resized = TF.to_pil_image(t)
136
  return {"X": X, "Hp": Hp, "Wp": Wp, "img": img_resized}
137
 
138
  # ----------------------------
139
+ # Similarity inside the same image - No changes here
140
  # ----------------------------
141
  def click_to_similarity_in_same_image(
142
  state: dict,
 
208
  # ----------------------------
209
  with gr.Blocks(theme=gr.themes.Soft(), title="DINOv3 Single-Image Patch Similarity") as demo:
210
  gr.Markdown("# πŸ¦– DINOv3 Single-Image Patch Similarity")
211
+ gr.Markdown("## Running on CPU-only Space, feature extraction can take a moment")
212
+ gr.Markdown("1. **Choose a model**. 2. Upload an image. 3. Click **Process Image**. 4. **Click anywhere on the processed image** to find similar regions.")
213
 
214
  app_state = gr.State()
215
 
216
  with gr.Row():
217
  with gr.Column(scale=1):
218
+ # ⭐ ADDED MODEL DROPDOWN
219
+ model_name_dd = gr.Dropdown(
220
+ label="1. Choose a Model",
221
+ choices=list(MODELS.keys()),
222
+ value=DEFAULT_MODEL_NAME,
223
+ )
224
  input_image = gr.Image(
225
+ label="2. Upload Image",
226
  type="pil",
227
  value="https://images.squarespace-cdn.com/content/v1/607f89e638219e13eee71b1e/1684821560422-SD5V37BAG28BURTLIXUQ/michael-sum-LEpfefQf4rU-unsplash.jpg"
228
  )
 
231
  label="Processing Resolution",
232
  info="Higher values = more detail but slower processing",
233
  )
234
+ process_button = gr.Button("3. Process Image", variant="primary")
235
+
 
236
  with gr.Row():
237
  alpha = gr.Slider(0.0, 1.0, value=0.55, step=0.05, label="Overlay opacity")
238
  cmap = gr.Dropdown(
 
245
  box_radius = gr.Slider(0, 10, value=1, step=1, label="Box radius (patches)")
246
 
247
  with gr.Row():
248
+ marked_image = gr.Image(label="4. Click on this image", interactive=True)
249
  heatmap_output = gr.Image(label="Similarity heatmap", interactive=False)
250
  with gr.Row():
251
  overlay_output = gr.Image(label="Overlay (image βŠ• heatmap)", interactive=False)
252
  overlay_boxes_output = gr.Image(label="Overlay + top-K similar patch boxes", interactive=False)
253
 
254
+ # ⭐ UPDATED to take model_name as input
255
+ def _process_image(model_name: str, img: Image.Image, long_side: int, progress=gr.Progress(track_tqdm=True)):
256
  if img is None:
257
  gr.Warning("Please upload an image first!")
258
  return None, None
259
+
260
+ progress(0, desc=f"Loading model '{model_name}'...")
261
+ model = get_model(model_name)
262
+
263
+ progress(0.5, desc="Extracting features...")
264
+ st = extract_image_features(model, img, int(long_side))
265
+
266
  progress(1, desc="Done! You can now click on the image.")
267
  return st["img"], st
268
 
 
276
  box_radius_patches=int(box_rad),
277
  )
278
 
279
+ # ⭐ UPDATED EVENT WIRING to include the dropdown
280
+ inputs_for_processing = [model_name_dd, input_image, target_long_side]
281
  outputs_for_processing = [marked_image, app_state]
282
+
 
283
  process_button.click(
284
+ _process_image,
285
+ inputs=inputs_for_processing,
286
  outputs=outputs_for_processing
287
  )
288
+
 
289
  marked_image.select(
290
  _on_click,
291
  inputs=[app_state, alpha, cmap, exclude_r, topk, box_radius],