Spaces:
Runtime error
Runtime error
File size: 16,130 Bytes
9091025 7215ea6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
import numpy as np
import matplotlib.pyplot as plt
import sqlite3
import geopandas as gpd
import pandas as pd
# Import Meteostat library and dependencies
from datetime import datetime
import matplotlib.pyplot as plt
from meteostat import Point, Monthly
from tqdm import tqdm
import folium
from folium import GeoJson
import geopandas as gpd
import numpy as np
import matplotlib.colors
#remove pandas warning
pd.options.mode.chained_assignment = None # default='warn'
#remove geo pandas warning
gpd.options.use_pygeos = False
import pandas as pd
import logging
import modelchain_example as mc_e
from windpowerlib import WindTurbineCluster, WindFarm, TurbineClusterModelChain
#remove pandas warning
pd.options.mode.chained_assignment = None # default='warn'
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
import gradio as gr
import folium
import geopandas as gpd
import pandas as pd
import numpy as np
from shapely.geometry import box
from branca.colormap import LinearColormap
import random
import io
import folium
from shapely.geometry import box
import geopandas as gpd
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors
def wind_for_location(longitude, latitude):
start = datetime(2015, 1, 1)
end = datetime(2022, 12, 31)
# Create Point for Vancouver, BC
city = Point(latitude, longitude, 70)
# Get daily data for 2018
data = Monthly(city, start, end)
data = data.fetch()
windspeed = data['wspd']
max_windspeed = windspeed.mean()
return max_windspeed
def weather_for_location(longitude, latitude):
start = datetime(2015, 1, 1)
end = datetime(2022, 12, 31)
# Create Point for Vancouver, BC
city = Point(latitude, longitude, 70)
# Get daily data for 2018
data = Monthly(city, start, end)
data = data.fetch()
return data
def price_per_wind_power_plant(longitude):
return 500_000*abs((49-longitude))/47 + 50_000
import ast
def setup_wind_farm_cluster(num_of_plants,num_my_turbines=6,num_e126_turbines=6,location=(8,50)):
# Configure logging
logging.basicConfig(level=logging.DEBUG)
if isinstance(location, str):
location = ast.literal_eval(location)
# Get weather data
latitude = float(location[1])
longitude = float(location[0])
data = weather_for_location(longitude, latitude)
# Assuming 'data' is a DataFrame with columns ['tavg', 'wspd', 'pres']
data["roughness_length"] = 0.15
data["temperature"] = data["tavg"]
data["wind_speed"] = data["wspd"]
data["pressure"] = data["pres"]
# Create a multiindex
multiindex = pd.MultiIndex.from_tuples(
[('pressure', 0),
('temperature', 2),
('wind_speed', 2),
('roughness_length', 0),
('temperature', 10),
('wind_speed', 10)],
names=['variable_name', 'height']
)
# Data for the multiindex DataFrame
data_WEATHER = {
('pressure', 0): data["pressure"]*10,
('temperature', 2): data["temperature"]*10,
('wind_speed', 2): data["wind_speed"],
('roughness_length', 0): [0.15] * len(data), # Assuming constant value for all rows
('temperature', 10): data["temperature"]*10, # Assuming same temperature values for height 10
('wind_speed', 10): data["wind_speed"] # Assuming same wind speed values for height 10
}
# Creating the MultiIndex DataFrame
df_multi = pd.DataFrame(data_WEATHER, index=data.index)
df_multi.ffill(inplace=True)
df_multi.bfill(inplace=True)
df_multi.dropna(inplace=True)
# Initialize wind turbines
my_turbine, e126, _ = mc_e.initialize_wind_turbines()
# Initialize WindFarm objects
farms = []
num_of_plants = int(num_of_plants)
num_my_turbines = int(num_my_turbines)
num_e126_turbines = int(num_e126_turbines)
for i in range(num_of_plants):
farm_data = {
'name': f'example_farm_{i}',
'wind_turbine_fleet': [my_turbine.to_group(num_my_turbines), e126.to_group(num_e126_turbines)],
'efficiency': 0.9
}
farms.append(WindFarm(**farm_data))
# Initialize WindTurbineCluster
example_cluster = WindTurbineCluster(name='example_cluster', wind_farms=farms)
# Calculate power output for each farm and for the turbine cluster
for farm in farms:
mc_farm = TurbineClusterModelChain(farm).run_model(df_multi)
farm.power_output = mc_farm.power_output
farm.efficiency = 0.9 # Set efficiency
# Calculate power output for turbine_cluster with custom modelchain data
modelchain_data = {
'wake_losses_model': 'wind_farm_efficiency',
'smoothing': True,
'block_width': 0.5,
'standard_deviation_method': 'Staffell_Pfenninger',
'smoothing_order': 'wind_farm_power_curves',
'wind_speed_model': 'logarithmic',
'density_model': 'ideal_gas',
'temperature_model': 'linear_gradient',
'power_output_model': 'power_curve',
'density_correction': True,
'obstacle_height': 0,
'hellman_exp': None
}
mc_example_cluster = TurbineClusterModelChain(example_cluster, **modelchain_data).run_model(df_multi)
example_cluster.power_output = mc_example_cluster.power_output
# try to import matplotlib
logging.getLogger().setLevel(logging.WARNING)
from matplotlib import pyplot as plt
df = example_cluster.power_output
#make seriesto dataframe
df = df.to_frame()
df["Time"] = df.index
df["example_cluster"] = df[df.columns[0]]
#rename column
# Plotting Function
plt.figure(figsize=(6,4))
plt.plot(df["Time"], df['example_cluster'], label='example_cluster')
plt.xlabel('Time')
plt.ylabel('Forecasted Power Output in W based on historical weather data')
fig_1 = plt.gcf()
plt.figure(figsize=(6,4))
example_cluster.power_curve.plot(
x='wind_speed', y='value', style='*')
plt.title('Power Curve of chosen Plant in regards to wind speed')
plt.xlabel('Wind speed in m/s')
plt.ylabel('Power in W')
fig_2 = plt.gcf()
#plot the historical weather data
plt.figure(figsize=(6,4))
plt.plot(data["tavg"], label='Temperature')
plt.plot(data["wspd"], label='Wind Speed')
plt.plot(data["pres"]*0.01, label='Pressure/100')
plt.title('Historical Weather Data used for Forecasting')
plt.xlabel('Time')
plt.ylabel('Historical Weather Data')
plt.legend()
fig_3 = plt.gcf()
return fig_1, fig_2, fig_3, example_cluster
# Your existing code to generate the map
def generate_germany_wind_map(chosen_location_long, chosen_location_lat):
# Load the map of Germany
germany_map = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres')).query('name == "Germany"')
# Getting Germany's boundaries
minx, miny, maxx, maxy = germany_map.total_bounds
# Dividing Germany into a grid of 10x10
num_squares_side = 20
x_step = (maxx - minx) / num_squares_side
y_step = (maxy - miny) / num_squares_side
# Create a DataFrame to hold square polygons and their colors
if 1==1:
squares_df = pd.DataFrame(columns=['geometry', 'color'])
# Create the squares and assign random colors
for i in range(num_squares_side):
for j in range(num_squares_side):
square = box(minx + i * x_step, miny + j * y_step, minx + (i+1) * x_step, miny + (j+1) * y_step)
# Check if the square intersects with Germany's boundary
if germany_map.intersects(square).any():
squares_df = squares_df.append({'geometry': square, 'color': np.random.randint(0, 100)}, ignore_index=True)
squares_df["center"] = 0
squares_df["longitude"] = 0
squares_df["latitude"] = 0
squares_df["windspeed"] = 0
for i in tqdm(range(len(squares_df))):
squares_df["center"][i] = squares_df["geometry"][i].centroid
squares_df["longitude"][i] = squares_df["center"][i].x
squares_df["latitude"][i] = squares_df["center"][i].y
squares_df["windspeed"][i] = wind_for_location(squares_df["longitude"][i], squares_df["latitude"][i])
#make color the
squares_df["color"] =squares_df["windspeed"].copy()
#standardize the color based on standard deviation
#squares_df["color"] = (squares_df["color"] - squares_df["color"].mean())/squares_df["color"].std()
squares_df.ffill(inplace=True)
squares_df["color"] = squares_df["color"]
# Convert squares DataFrame to GeoDataFrame
squares_gdf = gpd.GeoDataFrame(squares_df, geometry='geometry')
# Create a Folium map centered on Germany
m = folium.Map(location=[(maxy + miny) / 2, (maxx + minx) / 2], zoom_start=6,tiles='cartodbpositron')
# Add Germany's borders to the map
folium.GeoJson(germany_map['geometry'], style_function=lambda feature: {
'fillColor': '#ffff00',
'color': '#000000',
'weight': 1,
'fillOpacity': 0,
}).add_to(m)
#add
from branca.colormap import LinearColormap
from branca.colormap import LinearColormap
import matplotlib
from branca.colormap import LinearColormap
# Define your colormap
colormap = LinearColormap(['#f7fbff', '#08306b'], vmin=7, vmax=20, caption="Mean Wind speed [m/s]]")
m.add_child(colormap)
# Add each square to the map with a color
for _, row in squares_gdf.iterrows():
# Normalize color value within the range of your colormap
#normalized_color = normalize(row['color'], vmin=5, vmax=50)
# Get color from colormap
color = colormap(row['color'])
folium.GeoJson(row['geometry'], style_function=lambda feature, color=color: {
'fillColor': color,
'color': color,
'weight': 1,
'fillOpacity': 0.5,
}).add_to(m)
#get a random point from germany_map.geometry[121]
#add 100 random points with price per wind power plant
import random
from shapely.geometry import Polygon
import shapely
polygon = Polygon(germany_map.geometry[121])
def generate_random_points(polygon, num_points):
points = []
min_x, min_y, max_x, max_y = polygon.bounds
while len(points) < num_points:
random_point = shapely.geometry.Point(random.uniform(min_x, max_x), random.uniform(min_y, max_y))
if polygon.contains(random_point):
points.append(random_point)
return points
points = generate_random_points(polygon, 100)
# Define your colormap, red to white
colormap_new_prices = LinearColormap(['green', 'red'], vmin=50000, vmax=100000, caption="Price per wind power plant (Only Land) [€]")
m.add_child(colormap_new_prices)
for point_german in points:
#get longitude and latitude
lon_point = point_german.x
lat_point = point_german.y
#get the price per wind power plant
price = price_per_wind_power_plant(lat_point)
#colorize the point based on the price
color = colormap_new_prices(price)
#add the point to the map
folium.CircleMarker(location=[lat_point, lon_point], radius=5, color=color, fill=True,popup=price).add_to(m)
#add the price to the map
#add the wind speed to the map
#get the closest point to the chosen location
from shapely.ops import nearest_points
#create a point
point = shapely.geometry.Point(chosen_location_long, chosen_location_lat)
#get the closest point
nearest_geoms = nearest_points(point, germany_map.geometry[121])
#get the closest point
nearest_point = nearest_geoms[1]
#get longitude and latitude
lon_point = nearest_point.x
lat_point = nearest_point.y
#add as big marker
folium.CircleMarker(location=[lat_point, lon_point], radius=10, color="blue", fill=True,popup="Chosen Location").add_to(m)
return m._repr_html_(), lon_point, lat_point
import json
from llamaapi import LlamaAPI
def generate_all(str_user_query):
# Initialize the llamaapi with your api_token
llama = LlamaAPI("LL-19li1nMIQLwltTkGRrN9vrfGgPAPZt2VKkW9rhWGt2lD6nDl6xrnPfEQ3C1X3UpO")
# Define your API request
api_request_json_select_wind_power_output = {
"messages": [
{"role": "user", "content": f"I want to build a windfarm with 25 Wind Power turbines in nothern Germany?"},
],
"functions": [
{
"name": "get_wind_power_estimation",
"description": "Get the a simulation of the wind power output for a wind power plant",
"parameters": {
"type": "object",
"properties": {
"number_power_plants": {
"type": "number",
"description": "How many power plants do you want to build?",
},
"num_my_turbine_per_plant": {
"type": "number",
"description": "How many of tubine my_turbine do you want to build per plant? Default six.",
},
"num_e126_turbine_per_plant": {
"type": "number",
"description": "How many of tubine e126 do you want to build per plant? Default six.",
},
"latitude": {
"type": "number",
"description": "The longitude of the location of the wind power plant",
},
"longitude": {
"type": "number",
"description": "The longitude of the location of the wind power plant",
},
},
},
"required": ["number_power_plants", "num_my_turbine_per_plant", "num_e126_turbine_per_plant", "latitude", "longitude"],
}
],
"stream": False,
"function_call": "get_wind_power_estimation",
}
# Make your request and handle the response
response = llama.run(api_request_json_select_wind_power_output)
output_llama = json.dumps(response.json(), indent=2)
dict_llama = dict(response.json())
dict_function = dict_llama["choices"][0]["message"]["function_call"]["arguments"]
fig_1, fig_2, fig_3, cluster = setup_wind_farm_cluster(dict_function["number_power_plants"],dict_function["num_my_turbine_per_plant"],dict_function["num_e126_turbine_per_plant"],(dict_function["longitude"],dict_function["latitude"]))
html_1, lon_point, lat_point = generate_germany_wind_map(dict_function["longitude"],dict_function["latitude"])
int_output = int(cluster.power_curve["value"].mean())
#generate a text output
text_output = f"Based on the historical weather data, the wind power output of the wind power plant would be {int_output}W on average. The power curve of the chosen wind power plant is shown in the second figure. The historical weather data is shown in the third figure. It would cost {int(dict_function['number_power_plants'])*price_per_wind_power_plant(lat_point)} € to get the land for the wind power plant. The chosen location is shown in the map below. It would be located in the blue circle. The wind speed in the area is {wind_for_location(lon_point, lat_point)} m/s. Please ask if you have any questions or need more information."
return text_output, html_1, fig_1, fig_2, fig_3
# Create the Gradio interface
iface = gr.Interface(
fn=generate_all,
inputs=["text"], # Input is a text box
outputs=["text",gr.HTML(), "plot", "plot", "plot"], # Output is HTML
title="Wind Power Plant Location Finder",
description="Just tell me what you need, one example could be: I want to build a windfarm with 25 Wind Power turbines in nothern Germany."
)
if __name__ == "__main__":
iface.launch(share=True) |