Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,62 +1,45 @@
|
|
1 |
-
|
2 |
-
"""Untitled6.ipynb
|
3 |
-
|
4 |
-
Automatically generated by Colab.
|
5 |
-
|
6 |
-
Original file is located at
|
7 |
-
https://colab.research.google.com/drive/1F6f_vJbssO7C2FM6FILWljFYacDmbVBY
|
8 |
-
"""
|
9 |
-
|
10 |
-
# Import necessary libraries
|
11 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
12 |
|
13 |
-
# Load model and tokenizer
|
14 |
-
model_name = "distilgpt2"
|
15 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
16 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
17 |
|
18 |
# Define the function to generate a response
|
19 |
def generate_response(prompt):
|
20 |
-
# Tokenize the input prompt
|
21 |
inputs = tokenizer(prompt, return_tensors="pt")
|
22 |
-
# Generate a response
|
23 |
outputs = model.generate(
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
# Decode the output and set clean_up_tokenization_spaces to True to avoid warnings
|
33 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
34 |
return response
|
35 |
|
36 |
-
#
|
37 |
-
prompt =
|
38 |
-
|
39 |
-
print(response)
|
40 |
-
|
41 |
-
def persona_response(prompt, persona="I am a helpful assistant"):
|
42 |
-
full_prompt = f"{persona}. {prompt}"
|
43 |
return generate_response(full_prompt)
|
44 |
|
45 |
-
# Import Gradio
|
46 |
-
import gradio as gr
|
47 |
-
|
48 |
# Define Gradio interface function
|
49 |
-
def chat_interface(user_input, persona="
|
50 |
return persona_response(user_input, persona)
|
51 |
|
52 |
-
#
|
53 |
interface = gr.Interface(
|
54 |
fn=chat_interface,
|
55 |
-
inputs=["text", "text"],
|
56 |
outputs="text",
|
57 |
title="Simple Chatbot",
|
58 |
-
description="
|
59 |
)
|
60 |
|
61 |
-
# Launch the Gradio
|
62 |
-
|
|
|
|
1 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import gradio as gr
|
4 |
|
5 |
+
# Load the model and tokenizer
|
6 |
+
model_name = "distilgpt2"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
|
10 |
# Define the function to generate a response
|
11 |
def generate_response(prompt):
|
|
|
12 |
inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
13 |
outputs = model.generate(
|
14 |
+
inputs.input_ids,
|
15 |
+
max_length=70,
|
16 |
+
do_sample=True,
|
17 |
+
temperature=0.6,
|
18 |
+
top_p=0.9,
|
19 |
+
repetition_penalty=1.2,
|
20 |
+
pad_token_id=tokenizer.eos_token_id
|
21 |
+
)
|
|
|
22 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
23 |
return response
|
24 |
|
25 |
+
# Persona-based response function
|
26 |
+
def persona_response(prompt, persona="You are a helpful talking dog that answers in short, simple phrases."):
|
27 |
+
full_prompt = f"{persona}: {prompt}"
|
|
|
|
|
|
|
|
|
28 |
return generate_response(full_prompt)
|
29 |
|
|
|
|
|
|
|
30 |
# Define Gradio interface function
|
31 |
+
def chat_interface(user_input, persona="You are a helpful talking dog that answers in short, simple phrases."):
|
32 |
return persona_response(user_input, persona)
|
33 |
|
34 |
+
# Gradio interface setup
|
35 |
interface = gr.Interface(
|
36 |
fn=chat_interface,
|
37 |
+
inputs=["text", "text"],
|
38 |
outputs="text",
|
39 |
title="Simple Chatbot",
|
40 |
+
description="Chat with the bot! Add a persona like 'I am a shopping assistant.'"
|
41 |
)
|
42 |
|
43 |
+
# Launch the Gradio app
|
44 |
+
if __name__ == "__main__":
|
45 |
+
interface.launch()
|