# -*- coding: utf-8 -*- """Untitled6.ipynb Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1F6f_vJbssO7C2FM6FILWljFYacDmbVBY """ # Import necessary libraries from transformers import AutoModelForCausalLM, AutoTokenizer # Load model and tokenizer model_name = "distilgpt2" # A lightweight, CPU-friendly model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Define the function to generate a response def generate_response(prompt): # Tokenize the input prompt inputs = tokenizer(prompt, return_tensors="pt") # Generate a response outputs = model.generate( inputs.input_ids, max_length=50, do_sample=True, # Enable sampling temperature=0.7, # Controls randomness top_p=0.9, # Nucleus sampling pad_token_id=tokenizer.eos_token_id ) # Decode the output and set clean_up_tokenization_spaces to True to avoid warnings response = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) return response # Example usage prompt = "I went to Safeway and I bought a" response = generate_response(prompt) print(response) def persona_response(prompt, persona="I am a helpful assistant"): full_prompt = f"{persona}. {prompt}" return generate_response(full_prompt) # Import Gradio import gradio as gr # Define Gradio interface function def chat_interface(user_input, persona="I am a helpful assistant"): return persona_response(user_input, persona) # Set up Gradio interface interface = gr.Interface( fn=chat_interface, inputs=["text", "text"], # Allows input for both prompt and persona outputs="text", title="Simple Chatbot", description="Type something to chat with the bot! Add a persona to change its style, like 'I am a shopping assistant.'" ) # Launch the Gradio interface in Colab interface.launch(share=True) # share=True creates a public link