import gradio as gr from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler import torch def load_model(): # Specify the Stable Diffusion pipeline with an appropriate model type pipeline = StableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16, revision="fp16", safety_checker=None # Disable safety checker if necessary ) # Set the scheduler (optional but recommended) pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) # Move pipeline to GPU or ZeroGPU pipeline = pipeline.to("cuda") # or ZeroGPU-specific setup return pipeline # Initialize the model try: model = load_model() except Exception as e: print(f"Error loading the model: {e}") # Define Gradio interface def generate(prompt, guidance_scale=7.5, num_inference_steps=50): # Generate the image images = model(prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images return images[0] # Gradio Interface with gr.Blocks() as demo: with gr.Row(): prompt = gr.Textbox(label="Enter your prompt") guidance_scale = gr.Slider(1.0, 10.0, value=7.5, label="Guidance Scale") steps = gr.Slider(10, 100, value=50, label="Number of Inference Steps") with gr.Row(): submit = gr.Button("Generate") with gr.Row(): output = gr.Image() submit.click(generate, inputs=[prompt, guidance_scale, steps], outputs=output) demo.launch()