File size: 7,284 Bytes
abcb943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e4083f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1ed06d
7e4083f
 
36cc9c0
 
291e330
 
 
 
 
7e4083f
 
 
291e330
 
 
 
 
 
 
 
7e4083f
 
 
 
 
 
 
abcb943
7e4083f
 
 
abcb943
 
 
 
 
 
 
 
 
 
 
 
 
7e4083f
 
 
 
abcb943
 
 
7e4083f
 
 
 
 
 
36cc9c0
7e4083f
 
 
 
 
 
abcb943
1c99c03
7e4083f
 
 
abcb943
7e4083f
abcb943
7e4083f
 
abcb943
7e4083f
 
 
 
 
 
291e330
7e4083f
 
 
 
 
 
 
 
 
 
 
 
 
 
abcb943
7e4083f
 
 
 
 
 
 
 
 
 
 
 
abcb943
2117cb6
adabb71
 
abcb943
2117cb6
 
 
abcb943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# app.py
import gradio as gr
import pandas as pd
import requests
import xgboost as xgb
from huggingface_hub import hf_hub_download
from app_training_df_getter import create_app_user_training_df
import os
import time
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.chrome.options import Options
from webdriver_manager.chrome import ChromeDriverManager
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC

# Define champion list for dropdowns
CHAMPIONS = [
    "Aatrox", "Ahri", "Akali", "Akshan", "Alistar", "Amumu", "Anivia", "Annie", "Aphelios", "Ashe",
    "Aurelion Sol", "Azir", "Bard", "Bel'Veth", "Blitzcrank", "Brand", "Braum", "Caitlyn", "Camille",
    "Cassiopeia", "Cho'Gath", "Corki", "Darius", "Diana", "Dr. Mundo", "Draven", "Ekko", "Elise",
    "Evelynn", "Ezreal", "Fiddlesticks", "Fiora", "Fizz", "Galio", "Gangplank", "Garen", "Gnar",
    "Gragas", "Graves", "Gwen", "Hecarim", "Heimerdinger", "Illaoi", "Irelia", "Ivern", "Janna",
    "Jarvan IV", "Jax", "Jayce", "Jhin", "Jinx", "Kai'Sa", "Kalista", "Karma", "Karthus", "Kassadin",
    "Katarina", "Kayle", "Kayn", "Kennen", "Kha'Zix", "Kindred", "Kled", "Kog'Maw", "KSante", "LeBlanc",
    "Lee Sin", "Leona", "Lillia", "Lissandra", "Lucian", "Lulu", "Lux", "Malphite", "Malzahar", "Maokai",
    "Master Yi", "Milio", "Miss Fortune", "Mordekaiser", "Morgana", "Naafiri", "Nami", "Nasus", "Nautilus",
    "Neeko", "Nidalee", "Nilah", "Nocturne", "Nunu & Willump", "Olaf", "Orianna", "Ornn", "Pantheon",
    "Poppy", "Pyke", "Qiyana", "Quinn", "Rakan", "Rammus", "Rek'Sai", "Rell", "Renata Glasc", "Renekton",
    "Rengar", "Riven", "Rumble", "Ryze", "Samira", "Sejuani", "Senna", "Seraphine", "Sett", "Shaco",
    "Shen", "Shyvana", "Singed", "Sion", "Sivir", "Skarner", "Sona", "Soraka", "Swain", "Sylas",
    "Syndra", "Tahm Kench", "Taliyah", "Talon", "Taric", "Teemo", "Thresh", "Tristana", "Trundle",
    "Tryndamere", "Twisted Fate", "Twitch", "Udyr", "Urgot", "Varus", "Vayne", "Veigar", "Vel'Koz",
    "Vex", "Vi", "Viego", "Viktor", "Vladimir", "Volibear", "Warwick", "Wukong", "Xayah", "Xerath",
    "Xin Zhao", "Yasuo", "Yone", "Yorick", "Yuumi", "Zac", "Zed", "Zeri", "Ziggs", "Zilean", "Zoe", "Zyra"
]

# Load model
try:
    model_path = hf_hub_download(
        repo_id="ivwhy/champion-predictor-model",
        filename="champion_predictor.json"
    )
    model = xgb.Booster()
    model.load_model(model_path)
except Exception as e:
    print(f"Error loading model: {e}")
    model = None

# Functions
def get_user_training_df(player_opgg_url):
    try:
        print("========= Inside get_user_training_df(player_opgg_url) ============= \n")
        print("player_opgg_url: ", player_opgg_url, "\n")

        # Add input validation
        if not player_opgg_url or not isinstance(player_opgg_url, str):
            return "Invalid URL provided"

        training_df = create_app_user_training_df(player_opgg_url)
        return training_df
    except Exception as e:

        # Add more detailed error information
        import traceback
        error_trace = traceback.format_exc()
        print(f"Full error trace:\n{error_trace}")
        return f"Error getting training data: {str(e)}"

        #return f"Error getting training data: {e}"

def show_stats(player_opgg_url):
    """Display player statistics and recent matches"""
    if not player_opgg_url:
        return "Please enter a player link to OPGG", None
    
    try:
        training_features = get_user_training_df(player_opgg_url)
        
        if isinstance(training_features, str):  # Error message
            return training_features, None

        wins = training_features['result'].sum()
        losses = len(training_features) - wins
        winrate = f"{(wins / len(training_features)) * 100:.0f}%"
        favorite_champions = (
            training_features['champion']
            .value_counts()
            .head(3)
            .index.tolist()
        )

        stats_html = f"""
        <div style='padding: 20px; background: #f5f5f5; border-radius: 10px;'>
            <h3>Player Stats</h3>
            <p>Wins: {wins} | Losses: {losses}</p>
            <p>Winrate: {winrate}</p>
            <p>Favorite Champions: {', '.join(favorite_champions)}</p>
        </div>
        """
        
        return stats_html, None
    except Exception as e:
        return f"Error processing stats: {e}", None

def predict_champion(player_opgg_url, *champions):
    """Make prediction based on selected champions"""

    if not player_opgg_url or None in champions:
        return "Please fill in all fields"
    
    try:
        if model is None:
            return "Model not loaded properly"

        features = get_user_training_df(player_opgg_url)
        if isinstance(features, str):  # Error message
            return features
            
        prediction = model.predict(features)
        predicted_champion = CHAMPIONS[prediction[0]]
        return f"Predicted champion: {predicted_champion}"
    except Exception as e:
        return f"Error making prediction: {e}"

# Define your interface
with gr.Blocks() as demo:
    gr.Markdown("# League of Legends Champion Prediction")
    
    with gr.Row():
        player_opgg_url = gr.Textbox(label="OPGG Player URL")
        show_button = gr.Button("Show Player Stats")
    
    with gr.Row():
        stats_output = gr.HTML(label="Player Statistics")
        recent_matches = gr.HTML(label="Recent Matches")
    
    with gr.Row():
        champion_dropdowns = [
            gr.Dropdown(choices=CHAMPIONS, label=f"Champion {i+1}")
            for i in range(9)
        ]
    
    with gr.Row():
        predict_button = gr.Button("Predict")
        prediction_output = gr.Text(label="Prediction")
        
    # Set up event handlers
    show_button.click(
        fn=show_stats,
        inputs=[player_opgg_url],
        outputs=[stats_output, recent_matches]
    )
    
    predict_button.click(
        fn=predict_champion,
        inputs=[player_opgg_url] + champion_dropdowns,
        outputs=prediction_output
    )

# Enable queuing
#demo.queue(debug = True)
demo.launch(debug=True)

# For local testing
if __name__ == "__main__":
    demo.launch()


''' code graveyard

    def get_player_stats(player_opgg_url):
        """Get player statistics from API"""
        # Placeholder - implement actual API call

        return {
            'wins': 120,
            'losses': 80,
            'winrate': '60%',
            'favorite_champions': ['Ahri', 'Zed', 'Yasuo']
        }

    def get_recent_matches(player_opgg_url):
        """Get recent match history"""
        # Placeholder - implement actual API call
        return pd.DataFrame({
            'champion': ['Ahri', 'Zed', 'Yasuo'],
            'result': ['Win', 'Loss', 'Win'],
            'kda': ['8/2/10', '4/5/3', '12/3/7']
        })

    def prepare_features(player_opgg_url, champions):
        """Prepare features for model prediction"""
        # Placeholder - implement actual feature engineering
        features = []  # Transform champions into model features
        return pd.DataFrame([features])
   

'''