File size: 45,264 Bytes
abcb943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
import pandas as pd
from datetime import datetime
import os
import numpy as np
from urllib.parse import quote, unquote

class ChampionConverter:
    def __init__(self):
        self.champions = [
            "Aatrox", "Ahri", "Akali", "Akshan", "Alistar", "Ambessa", "Amumu", "Anivia", "Annie", "Aphelios", "Ashe", "Aurelion Sol",
            "Aurora", "Azir", "Bard", "Bel'Veth", "Blitzcrank", "Brand", "Braum", "Briar", "Caitlyn", "Camille", "Cassiopeia", "Cho'Gath",
            "Corki", "Darius", "Diana", "Dr. Mundo", "Draven", "Ekko", "Elise", "Evelynn", "Ezreal", "Fiddlesticks", "Fiora", "Fizz", "Galio",
            "Gangplank", "Garen", "Gnar", "Gragas", "Graves", "Gwen", "Hecarim", "Heimerdinger", "Hwei", "Illaoi", "Irelia", "Ivern", "Janna",
            "Jarvan IV", "Jax", "Jayce", "Jhin", "Jinx", "K'Sante", "Kai'Sa", "Kalista", "Karma", "Karthus", "Kassadin", "Katarina", "Kayle",
            "Kayn", "Kennen", "Kha'Zix", "Kindred", "Kled", "Kog'Maw", "LeBlanc", "Lee Sin", "Leona", "Lillia", "Lissandra", "Lucian", "Lulu",
            "Lux", "Malphite", "Malzahar", "Maokai", "Master Yi", "Milio", "Miss Fortune", "Mordekaiser", "Morgana", "Naafiri", "Nami", "Nasus",
            "Nautilus", "Neeko", "Nidalee", "Nilah", "Nocturne", "Nunu & Willump", "Olaf", "Orianna", "Ornn", "Pantheon", "Poppy", "Pyke",
            "Qiyana", "Quinn", "Rakan", "Rammus", "Rek'Sai", "Rell", "Renata Glasc", "Renekton", "Rengar", "Riven", "Rumble", "Ryze", "Samira",
            "Sejuani", "Senna", "Seraphine", "Sett", "Shaco", "Shen", "Shyvana", "Singed", "Sion", "Sivir", "Skarner", "Smolder", "Sona",
            "Soraka", "Swain", "Sylas", "Syndra", "Tahm Kench", "Taliyah", "Talon", "Taric", "Teemo", "Thresh", "Tristana", "Trundle",
            "Tryndamere", "Twisted Fate", "Twitch", "Udyr", "Urgot", "Varus", "Vayne", "Veigar", "Vel'Koz", "Vex", "Vi", "Viego", "Viktor",
            "Vladimir", "Volibear", "Warwick", "Wukong", "Xayah", "Xerath", "Xin Zhao", "Yasuo", "Yone", "Yorick", "Yuumi", "Zac", "Zed",
            "Zeri", "Ziggs", "Zilean", "Zoe", "Zyra"
        ]

        self.champion_to_number = {champion: i for i, champion in enumerate(self.champions, start=1)}
        self.number_to_champion = {i: champion for i, champion in enumerate(self.champions, start=1)}

    def champion_to_num(self, champion_name):
        return self.champion_to_number.get(champion_name, None)

    def num_to_champion(self, number):
        return self.number_to_champion.get(number, None)
    
def convert_date(date_str):
    """Convert datetime string to Unix timestamp"""
    try:
        if pd.isna(date_str):
            return None
        return pd.to_datetime(date_str).timestamp()
    except:
        return None
    

def convert_to_minutes(time_str):
    """Convert time string (e.g., '15m 10s') to minutes (float)"""
    try:
        minutes = seconds = 0
        parts = time_str.lower().split()
        for part in parts:
            if 'm' in part:
                minutes = float(part.replace('m', ''))
            elif 's' in part:
                seconds = float(part.replace('s', ''))
        return round(minutes + seconds/60, 2)
    except:
        return 0.0
    
def convert_percentage_to_decimal(percentage_str):
    """Convert percentage string (e.g., 'P/Kill 43%') to decimal (0.43)"""
    try:
        # Extract number from string and convert to decimal
        num = float(''.join(filter(str.isdigit, percentage_str))) / 100
        return round(num, 2)
    except:
        return 0.0
    
def convert_tier_to_number(tier_str):
    """
    Convert tier string to number:
    Challenger -> 1
    Grandmaster -> 2
    Master -> 3
    Others -> 4
    """
    tier_map = {
        'challenger': 1,
        'grandmaster': 2,
        'master': 3
    }
    # Convert to lowercase and return mapped value or 4 for any other tier
    return tier_map.get(tier_str.lower().strip(), 4)

def convert_result_to_binary(result_str):
    """
    Convert match result to binary:
    Victory -> 1
    Defeat -> 0
    """
    return 1 if result_str.lower().strip() == 'victory' else 0

def merge_stats(recent_stats, player_stats, current_time =None):
    """
    Merge recent match stats with player profile stats and save to CSV.
    Only keeps rows where matches exist in both DataFrames.
    
    Args:
        recent_stats (DataFrame/dict): Recent match statistics
        player_stats (DataFrame/tuple): Player profile statistics
        
    Returns:
        DataFrame: Combined statistics
    """
    try:
        if current_time is None:
            current_time = datetime.utcnow().strftime("%Y-%m-%d")

        # Convert recent_stats to DataFrame if it's not already
        if not isinstance(recent_stats, pd.DataFrame):
            recent_df = pd.DataFrame(recent_stats)
        else:
            recent_df = recent_stats
        
        # Handle player_stats based on its type
        if isinstance(player_stats, tuple):
            # If it's a tuple (merged_df, dfs), use the merged_df
            player_df = player_stats[0]
        elif isinstance(player_stats, pd.DataFrame):
            player_df = player_stats
        else:
            raise ValueError("Invalid player_stats format")

        # Ensure player_id exists in both DataFrames
        if 'player_id' not in recent_df.columns:
            recent_df['player_id'] = player_df['player_id'].iloc[0]

        # Print info before merge
        print(f"\nBefore merge:")
        print(f"Recent stats rows: {len(recent_df)}")
        print(f"Player stats rows: {len(player_df)}")
        print(f"Unique players in recent stats: {recent_df['player_id'].nunique()}")
        print(f"Unique players in player stats: {player_df['player_id'].nunique()}")

        # Merge DataFrames with inner join
        merged_df = pd.merge(
            recent_df,
            player_df,
            on='player_id',
            how='inner',  # Changed from 'left' to 'inner'
            suffixes=('', '_profile')
        )

        # Print info after merge
        print(f"\nAfter merge:")
        print(f"Merged stats rows: {len(merged_df)}")
        print(f"Unique players in merged stats: {merged_df['player_id'].nunique()}")

        # Reorder columns to ensure player_id and region are first
        cols = merged_df.columns.tolist()
        cols = ['player_id'] + [col for col in cols if col != 'player_id']
        if 'region' in cols:
            cols.remove('region')
            cols.insert(1, 'region')
        merged_df = merged_df[cols]

        # Create directory if it doesn't exist
        save_dir = "util/data"
        os.makedirs(save_dir, exist_ok=True)

        # Save to CSV
        filename = f"player_stats_merged_{current_time}.csv"
        filepath = os.path.join(save_dir, filename)
        merged_df.to_csv(filepath, index=False)
        print(f"\nSuccessfully saved merged stats to {filepath}")

        return merged_df

    except Exception as e:
        print(f"Error in merge_stats: {e}")
        return None
    

def filter_leaderboard(df, tiers=None):
    """
    Filter leaderboard DataFrame to keep only specific tiers.
    
    Args:
        df (pandas.DataFrame): Input leaderboard DataFrame
        tiers (list): List of tiers to keep. Defaults to ["CHALLENGER", "GRANDMASTER"]
        timestamp (str): Current timestamp in UTC
        scraper_user (str): Current user's login
    
    Returns:
        pandas.DataFrame: Filtered leaderboard data
    """
    try:
        # Set default tiers if none provided
        if tiers is None:
            tiers = ["CHALLENGER", "GRANDMASTER"]
        
        # Convert tiers to uppercase for consistency
        tiers = [tier.upper() for tier in tiers]
        
        # Validate input DataFrame
        required_cols = ["tier", "summoner", "region"]
        if not all(col in df.columns for col in required_cols):
            raise ValueError(f"DataFrame must contain columns: {required_cols}")
        
        # Create copy to avoid modifying original DataFrame
        filtered_df = df.copy()
        
        # Convert tier column to uppercase for consistent filtering
        filtered_df['tier'] = filtered_df['tier'].str.upper()
        
        # Filter by specified tiers
        filtered_df = filtered_df[filtered_df['tier'].isin(tiers)]
        
        
        # Sort by region and tier
        filtered_df = filtered_df.sort_values(['region', 'tier', 'rank'])
        
        # Reset index
        filtered_df = filtered_df.reset_index(drop=True)
        
        # Save to CSV
        output_file = os.path.join("util", "data", "lb_filtered.csv")
        os.makedirs(os.path.dirname(output_file), exist_ok=True)
        filtered_df.to_csv(output_file, index=False)
        
        print(f"\nFiltered leaderboard to {len(tiers)} tiers: {', '.join(tiers)}")
        print(f"Remaining entries: {len(filtered_df)}")
        print(f"Saved filtered leaderboard to {output_file}")
        
        # Print summary statistics
        print("\nSummary by region and tier:")
        summary = filtered_df.groupby(['region', 'tier']).size().unstack(fill_value=0)
        print(summary)
        
        return filtered_df
        
    except Exception as e:
        print(f"Error filtering leaderboard: {e}")
        return None

def format_summoner_name(summoner):
    """
    Format summoner name for URL usage
    
    Parameters:
    summoner: str - Original summoner name
    
    Returns:
    str - Formatted summoner name
    """
    if not summoner:
        raise ValueError("Summoner name cannot be empty")
        
    # Remove leading/trailing whitespace
    summoner = summoner.strip()
    
    # Replace spaces and special characters
    formatted_summoner = summoner.replace(" ", "-").replace("#", "-")
    
    # Handle other special characters through URL encoding
    formatted_summoner = quote(formatted_summoner)
    
    return formatted_summoner

def convert_to_displayname(name):
    """
    Convert a summoner name to display format
    Examples:
    marthinsurya-NA -> marthinsurya #NA
    toplane%20kid-EUW77 -> toplane kid #EUW77
    Walid-Georgey-EUW -> Walid Georgey #EUW
    Current%20User-KR -> Current User #KR
    """
    try:
        if not name:
            return ""
            
        # First decode URL encoding
        decoded = unquote(name)
        
        # Remove any trailing hyphens
        decoded = decoded.rstrip('-')
        
        # Split by last hyphen to separate name and region
        if '-' in decoded:
            parts = decoded.rsplit('-', 1)
            base_name = parts[0]  # Everything before last hyphen
            region = parts[1]
            
            # Replace remaining hyphens in base_name with spaces
            base_name = base_name.replace('-', ' ')
            
            # Clean up any double spaces
            base_name = ' '.join(filter(None, base_name.split()))
            
            return f"{base_name} #{region}"
        
        return decoded.replace('-', ' ')
    except Exception as e:
        print(f"Error converting name '{name}': {e}")
        return name



def get_player_list(leaderboard=None):
    """
    Convert leaderboard data into proper player list format for API calls.
    
    Args:
        leaderboard (DataFrame): Input leaderboard DataFrame containing summoner and region
    
    Returns:
        DataFrame: Formatted player list with region and username columns
    """
    try:
        
        if leaderboard is None:
            leaderboard_file = os.path.join("util", "data", "lb_filtered.csv")
            leaderboard = pd.read_csv(leaderboard_file)
            
        # Rename summoner column to username
        leaderboard = leaderboard.rename(columns={'summoner': 'username'})
        
        # Select only region and username columns in correct order
        player_list = leaderboard[['region', 'username']]
        
        print(f"Successfully processed {len(player_list)} players")
        return player_list
        
    except Exception as e:
        print(f"Error processing leaderboard: {e}")
        return None

def process_kda_perfect(df):
    """
    Process KDA values in the DataFrame, replacing 'Perfect' with appropriate values.
    """
    try:
        # Create a copy to avoid modifying the original dataframe
        df = df.copy()
        
        # Function to safely convert to numeric
        def safe_convert(x):
            if isinstance(x, (int, float)):
                return x
            if isinstance(x, str) and x.lower() == 'perfect':
                return 6
            try:
                return float(x)
            except:
                return None

        # 1. Process KDA_1, KDA_2, KDA_3
        for col in ['KDA_1', 'KDA_2', 'KDA_3']:
            if col in df.columns:
                df[col] = df[col].apply(safe_convert)

        # 2. Process kda_ssn_1 to kda_ssn_7
        for i in range(1, 8):
            col = f'kda_ssn_{i}'
            if col in df.columns:
                perfect_mask = df[col].astype(str).str.contains('perfect', case=False)
                if perfect_mask.any():
                    kills_col, assists_col = f'k_ssn_{i}', f'a_ssn_{i}'
                    if kills_col in df.columns and assists_col in df.columns:
                        df.loc[perfect_mask, col] = df.loc[perfect_mask].apply(
                            lambda row: pd.to_numeric(row[kills_col], errors='coerce') + 
                                      pd.to_numeric(row[assists_col], errors='coerce'), 
                            axis=1
                        )
                    else:
                        df.loc[perfect_mask, col] = 6
                df[col] = pd.to_numeric(df[col], errors='coerce')

        # 3. Process kda_ratio_profile
        if 'kda_ratio_profile' in df.columns:
            perfect_mask = df['kda_ratio_profile'].astype(str).str.contains('perfect', case=False)
            if perfect_mask.any():
                df.loc[perfect_mask, 'kda_ratio_profile'] = df.loc[perfect_mask].apply(
                    lambda row: pd.to_numeric(row['avg_kills'], errors='coerce') + 
                              pd.to_numeric(row['avg_assists'], errors='coerce'),
                    axis=1
                )
            df['kda_ratio_profile'] = pd.to_numeric(df['kda_ratio_profile'], errors='coerce')

        # 4. Process remaining kda_ratio columns
        other_cols = [col for col in df.columns if 'kda_ratio' in col.lower() 
                     and col != 'kda_ratio_profile' 
                     and col not in [f'kda_ssn_{i}' for i in range(1, 8)]]
        
        for col in other_cols:
            perfect_mask = df[col].astype(str).str.contains('perfect', case=False)
            if perfect_mask.any():
                prefix = col.split('kda_ratio')[0]
                kills_col, assists_col = f"{prefix}kills", f"{prefix}assists"
                if kills_col in df.columns and assists_col in df.columns:
                    df.loc[perfect_mask, col] = df.loc[perfect_mask].apply(
                        lambda row: pd.to_numeric(row[kills_col], errors='coerce') + 
                                  pd.to_numeric(row[assists_col], errors='coerce'),
                        axis=1
                    )
                else:
                    df.loc[perfect_mask, col] = 6
            df[col] = pd.to_numeric(df[col], errors='coerce')

        return df

    except Exception as e:
        print(f"Error in process_kda_perfect: {str(e)}")
        return df


def check_mixed_types(df):
    """
    Check and print dataframe column types, inconsistencies, and basic statistics
    """
    # Get type information
    dtype_info = pd.DataFrame({
        'dtype': df.dtypes,
        'non_null': df.count(),
        'null_count': df.isnull().sum(),
        'unique_values': [df[col].nunique() for col in df.columns]
    })
    
    # Add sample of unique values for each column
    dtype_info['sample_values'] = [df[col].dropna().sample(min(3, len(df[col].dropna()))).tolist() 
                                 if len(df[col].dropna()) > 0 else [] 
                                 for col in df.columns]
    
    # Check for mixed types in object columns
    mixed_type_cols = []
    for col in df.select_dtypes(include=['object']):
        types = df[col].apply(type).unique()
        if len(types) > 1:
            mixed_type_cols.append({
                'column': col,
                'types': [t.__name__ for t in types],
                'samples': df[col].dropna().sample(min(3, len(df[col].dropna()))).tolist()
            })
    
    print("=== DataFrame Overview ===")
    print(f"Shape: {df.shape}")
    print("\n=== Data Types Summary ===")
    print(df.dtypes.value_counts())
    
    if mixed_type_cols:
        print("\n=== Mixed Type Columns ===")
        for col_info in mixed_type_cols:
            print(f"\nColumn: {col_info['column']}")
            print(f"Types found: {col_info['types']}")
            print(f"Sample values: {col_info['samples']}")
    
    return dtype_info

def check_nan_float(df, column_name):
    float_mask = df[column_name].apply(lambda x: isinstance(x, float))
    is_nan_mask = df[column_name].isna()

    # Check if all float values are NaN
    all_floats_are_nan = (float_mask == is_nan_mask).all()
    print(f"Are all float values NaN? {all_floats_are_nan}")

    # Double check by comparing counts
    print(f"Number of float values: {float_mask.sum()}")
    print(f"Number of NaN values: {is_nan_mask.sum()}")

def convert_team_colors(df):
    """
    Convert 'team' column values from 'blue'/'red' to 1/2
    
    Parameters:
    df (pandas.DataFrame): Input DataFrame with 'team' column
    
    Returns:
    pandas.DataFrame: DataFrame with converted team values
    """
    df = df.copy()
    
    if 'team' not in df.columns:
        raise ValueError("Column 'team' not found in DataFrame")
    
    # Create mapping dictionary
    team_mapping = {
        'blue': 1,
        'red': 2
    }
    
    # Convert team colors to numbers
    df['team'] = df['team'].map(team_mapping, na_action='ignore')
    
    return df

def convert_region(df):
    """
    Convert 'region' column values to numeric:
    kr -> 1
    euw -> 2
    vn -> 3
    na -> 4
    
    Parameters:
    df (pandas.DataFrame): Input DataFrame with 'region' column
    
    Returns:
    pandas.DataFrame: DataFrame with converted region values
    """
    df = df.copy()
    
    if 'region' not in df.columns:
        raise ValueError("Column 'region' not found in DataFrame")
    
    # Create mapping dictionary
    region_mapping = {
        'kr': 1,
        'euw': 2,
        'vn': 3,
        'na': 4
    }
    
    # Convert regions to numbers, keeping NA as NA
    df['region'] = df['region'].map(region_mapping, na_action='ignore')
    
    return df

def convert_champion_columns(df):
    """
    Convert all champion-related columns to numbers using ChampionConverter
    
    Parameters:
    df (pandas.DataFrame): Input DataFrame
    
    Returns:
    pandas.DataFrame: DataFrame with converted champion values
    """
    df = df.copy()
    
    # Initialize champion converter
    converter = ChampionConverter()
    
    # Get all champion-related columns
    champion_columns = [col for col in df.columns if 'champ' in col.lower()]
    
    for col in champion_columns:       
        # Convert champion names to numbers
        df[col] = df[col].map(converter.champion_to_num, na_action='ignore')
    
    return df

def convert_date_column(df):
    """
    Convert date column from string format to Unix timestamp
    Handles missing values (NaT, None, NaN)
    
    Parameters:
    df (pandas.DataFrame): Input DataFrame with 'date' column
    
    Returns:
    pandas.DataFrame: DataFrame with converted date values
    """
    df = df.copy()
    
    if 'date' not in df.columns:
        raise ValueError("Column 'date' not found in DataFrame")
    
    # Convert dates to timestamps
    df['date'] = df['date'].apply(convert_date)
    
    return df

def convert_role_columns(df):
    """
    Convert role columns to numbers:
    TOP -> 1, MID -> 2, ADC -> 3, JUNGLE -> 4, SUPPORT -> 5
    
    Parameters:
    df (pandas.DataFrame): Input DataFrame
    
    Returns:
    pandas.DataFrame: DataFrame with converted role values
    """
    df = df.copy()
    
    # Define role mapping
    role_mapping = {
        'TOP': 1,
        'MID': 2,
        'ADC': 3,
        'JUNGLE': 4,
        'SUPPORT': 5
    }
    
    # Role columns to convert
    role_columns = ['most_role_1', 'most_role_2']
    
    
    for col in role_columns:
        if col in df.columns:       
            # Convert roles to numbers
            df[col] = df[col].map(role_mapping, na_action='ignore')
            
        else:
            print(f"Warning: Column {col} not found in DataFrame")
    
    return df

def convert_id_columns(df):
    """
    Drop ID-related columns (player_id, teammates1-4, oppmates1-5)
    
    Parameters:
    df (pandas.DataFrame): Input DataFrame
    
    Returns:
    pandas.DataFrame: DataFrame with ID columns dropped
    """
    df = df.copy()
    
    # Specific ID columns to drop
    id_columns = (
        ['player_id', 'region_profile'] + 
        [f'teammates{i}' for i in range(1, 5)] +  # teammates1 to teammates4
        [f'oppmates{i}' for i in range(1, 6)]     # oppmates1 to oppmates5
    )
    
    
    # Verify columns exist and drop them
    existing_columns = [col for col in id_columns if col in df.columns]
    if len(existing_columns) != len(id_columns):
        missing = set(id_columns) - set(existing_columns)
        print(f"Note: Some columns were not found in DataFrame: {missing}")
    
    # Drop the columns
    df = df.drop(columns=existing_columns)
    
    return df

def remove_match_stats(df):
    """
    Remove match-specific statistics to prevent future data leakage.
    
    Parameters:
    df (pandas.DataFrame): Input DataFrame
    
    Returns:
    pandas.DataFrame: DataFrame with match-specific columns removed
    """
    # List of columns that contain match-specific information
    match_stat_columns = [
        'level',            # Champion level
        'result',           # Match outcome (target variable)
        'match_length_mins',# Match duration
        'kill',            # Kills in the match
        'death',           # Deaths in the match
        'assist',          # Assists in the match
        'kda_ratio',       # KDA ratio for the match
        'kill_participation',# Kill participation in the match
        'laning',          # Laning phase performance
        'cs',              # Creep score in the match
        'cs_per_min'       # CS per minute in the match
    ]
    
    # Create a copy of the dataframe
    df_clean = df.copy()
    
    # Remove match-specific columns
    columns_to_drop = [col for col in match_stat_columns if col in df_clean.columns]
    df_clean = df_clean.drop(columns=columns_to_drop)
    
    return df_clean

def convert_df(df):
    """
    Master function to handle all conversions for training DataFrame
    
    Includes:
    - Team color conversion (blue/red to 1/2)
    - Region conversion (kr/euw/vn/na to 1/2/3/4)
    - Champion conversion (champion names to numbers)
    - Date conversion (string to Unix timestamp)
    - Role conversion (TOP/MID/ADC/JUNGLE/SUPPORT to 1/2/3/4/5)
    - Drop ID columns (player_id, teammates1-4, oppmates1-5, region_profile)
    
    Parameters:
    df (pandas.DataFrame): Input training DataFrame
    
    Returns:
    pandas.DataFrame: Processed DataFrame with all conversions
    """
    df = df.copy()
    
    # Drop rows where champion is NA
    initial_rows = len(df)
    df = df.dropna(subset=['champion'])
    rows_dropped = initial_rows - len(df)
    print(f"Dropped {rows_dropped} rows with NA champion values")

    # Sequential conversions
    conversions = [
        convert_team_colors,      # Convert blue/red to 1/2
        convert_region,          # Convert kr/euw/vn/na to 1/2/3/4
        convert_champion_columns, # Convert champion names to numbers
        convert_date_column,     # Convert dates to timestamps
        convert_role_columns,    # Convert roles to 1-5
        convert_id_columns,       # Drop ID-related columns
        remove_match_stats        # Remove match-specific columns
    ]
    
    ## Apply each conversion function in sequence
    for convert_func in conversions:
        try:
            print(f"Applying {convert_func.__name__}...")
            df = convert_func(df)
        except Exception as e:
            print(f"Error in {convert_func.__name__}: {str(e)}")
            raise
    
    return df


def get_top_champion_scores(df, n=5):
    """
    Get top n champion scores from a DataFrame
    
    Parameters:
    df: pandas DataFrame containing champion scores
    n: number of top champions to return (default 5)
    
    Returns:
    pandas DataFrame with original data plus top n champion scores and their names
    """
    try:
        converter = ChampionConverter()
        df = df.copy()
        
        # Get all champion columns (from Aatrox to Zyra)
        champion_start = df.columns.get_loc('Aatrox')
        champion_end = df.columns.get_loc('Zyra') + 1
        champion_cols = df.columns[champion_start:champion_end]
        
        # Convert scores to numeric, replacing non-numeric values with 0
        champion_scores = df[champion_cols].apply(pd.to_numeric, errors='coerce').fillna(0)
        
        # Get indices of top n values for each row
        top_n_indices = champion_scores.apply(lambda x: pd.Series(x.nlargest(n).index), axis=1)
        top_n_values = champion_scores.apply(lambda x: pd.Series(x.nlargest(n).values), axis=1)
        
        # Create new columns for champion names and scores
        for i in range(n):
            # Champion scores
            df[f'{i+1}_champ_score'] = top_n_values.iloc[:, i].astype(float)
            
            # Champion names (converted to numbers)
            champ_names = top_n_indices.iloc[:, i]
            df[f'{i+1}_champ_name'] = champ_names.map(
                lambda x: int(converter.champion_to_num(x)) if pd.notnull(x) else -1
            )
        
        return df
    
    except Exception as e:
        print(f"Error in get_top_champion_scores: {str(e)}")
        # Return original DataFrame with default values in case of error
        for i in range(1, n + 1):
            df[f'{i}_champ_score'] = 0.0
            df[f'{i}_champ_name'] = -1
        return df
    
def check_datatypes(df):
    datatype= pd.DataFrame({
        'dtype': df.dtypes,
        'unique_values': df.nunique()
    })

    print(datatype)
    return datatype

def calculate_champ_variety_score(df):
    df = df.copy()  # Create a copy to avoid warnings
    
    # Create a list of champion columns we want to check
    champ_columns = [
        'most_champ_1', 'most_champ_2', 'most_champ_3',
        '7d_champ_1', '7d_champ_2', '7d_champ_3'
    ]
    
    # Filter to only include columns that exist in the DataFrame
    existing_columns = [col for col in champ_columns if col in df.columns]
    
    # Function to count unique non-NaN values
    def count_unique_champions(row):
        # Get all values that are not NaN
        valid_champions = row[existing_columns].dropna()
        # Count unique values
        return len(set(valid_champions))
    
    # Calculate the score for each row
    df['champ_variety_score'] = df.apply(count_unique_champions, axis=1)
    
    return df

def calculate_playstyle(df):
    df = df.copy()
    
    # Playstyle categorization (0-5)
    conditions = [
        # 0: Assassin/Carry (high kills, high KDA, high kill participation)
        (df['avg_kills'] > df['avg_assists']) & 
        (df['kda_ratio_profile'] > 3) & 
        (df['kill_participation_profile'] > 0.6),
        
        # 1: Support/Utility (high assists, good KDA, high kill participation)
        (df['avg_assists'] > df['avg_kills']) & 
        (df['kda_ratio_profile'] > 2.5) & 
        (df['kill_participation_profile'] > 0.55),
        
        # 2: Tank/Initiator (moderate deaths, high assists, high kill participation)
        (df['avg_deaths'] > 3) & 
        (df['avg_assists'] > df['avg_kills']) & 
        (df['kill_participation_profile'] > 0.5),
        
        # 3: Split-pusher (lower kill participation, good KDA)
        (df['kill_participation_profile'] < 0.5) & 
        (df['kda_ratio_profile'] > 2),
        
        # 4: Aggressive/Fighter (high kills and deaths, high kill participation)
        (df['avg_kills'] > 3) & 
        (df['avg_deaths'] > 4) & 
        (df['kill_participation_profile'] > 0.55)
    ]
    
    values = [0, 1, 2, 3, 4]  # Numeric values for each playstyle
    df['playstyle'] = np.select(conditions, values, default=5)
    
    return df

def get_most_role_3(df):
    df = df.copy()
    
    # Role mapping
    role_mapping = {
        'TOP': 1,
        'MID': 2,
        'ADC': 3,
        'JUNGLE': 4,
        'SUPPORT': 5
    }
    
    def get_third_role_info(row):
        # Create dictionary of role values excluding most_role_1 and most_role_2
        role_values = {
            'TOP': row['TOP'],
            'JUNGLE': row['JUNGLE'],
            'MID': row['MID'],
            'ADC': row['ADC'],
            'SUPPORT': row['SUPPORT']
        }
        
        # Remove most_role_1 and most_role_2 from consideration
        role_values.pop(row['most_role_1'], None)
        role_values.pop(row['most_role_2'], None)
        
        # Find highest remaining role and its value
        if role_values:
            third_role, third_value = max(role_values.items(), key=lambda x: x[1])
            return role_mapping[third_role], third_value
        return 0, 0.0  # Default values if no third role found

    # Add both most_role_3 and most_role_3_value
    df[['most_role_3', 'most_role_3_value']] = df.apply(get_third_role_info, axis=1, result_type='expand')
    
    return df

def calculate_role_specialization(df):
    df = df.copy()
    
    # Define conditions for role specialization
    conditions = [
        # 0: Pure Specialist (one dominant role)
        (df['most_role_1_value'] > 0.6),
        
        # 1: Strong Dual Role (two significant roles)
        (df['most_role_1_value'] <= 0.6) & 
        (df['most_role_2_value'] >= 0.3),
        
        # 2: Primary Role with Backups (moderate first role, has backups)
        (df['most_role_1_value'] <= 0.6) & 
        (df['most_role_2_value'] < 0.3) &
        (df['most_role_1_value'] > 0.3) &
        (df['most_role_3_value'] > 0.1),  # Has a viable third role
        
        # 3: Role Swapper (moderate first role, low others)
        (df['most_role_1_value'] <= 0.6) & 
        (df['most_role_2_value'] < 0.3) &
        (df['most_role_1_value'] > 0.3) &
        (df['most_role_3_value'] <= 0.1),  # No viable third role
        
        # 4: True Flex (plays multiple roles evenly)
        (df['most_role_1_value'] <= 0.3) & 
        (df['most_role_1_value'] > 0) &
        (df['most_role_3_value'] >= 0.15)  # Significant third role
    ]
    
    # 5 will be No Preference/Undefined (very low values or missing data)
    values = [0, 1, 2, 3, 4]  # Numeric values for each category
    df['role_specialization'] = np.select(conditions, values, default=5)
    
    return df

def calculate_champion_loyalty(df):
    df = df.copy()
    
    def get_loyalty_scores(row):
        try:
            # Get champions lists, handle potential NaN/None values (only top 2)
            recent_champs = [
                row['most_champ_1'] if pd.notna(row['most_champ_1']) else None,
                row['most_champ_2'] if pd.notna(row['most_champ_2']) else None
            ]
            
            # Include all 7 season champions
            season_champs = []
            season_games = []
            for i in range(1, 8):
                champ = row[f'season_champ_{i}'] if pd.notna(row[f'season_champ_{i}']) else None
                games = row[f'games_ssn_{i}'] if pd.notna(row[f'games_ssn_{i}']) else 0
                if champ is not None:
                    season_champs.append(champ)
                    season_games.append(games)
            
            # Add individual champion loyalty flags (only top 2)
            champ_loyalty_flags = {
                'recent_champ_1_loyal': 1 if (pd.notna(row['most_champ_1']) and 
                                            row['most_champ_1'] in season_champs) else 0,
                'recent_champ_2_loyal': 1 if (pd.notna(row['most_champ_2']) and 
                                            row['most_champ_2'] in season_champs) else 0
            }
            
            # Remove None values from recent champions
            recent_champs = [c for c in recent_champs if c is not None]
            
            # If no valid champions, return defaults
            if not recent_champs or not season_champs:
                return {
                    'loyalty_score': 0,
                    'confidence_score': 0,
                    **champ_loyalty_flags
                }
            
            # Calculate games played for recent champions (only top 2)
            recent_games = [
                (row['W_1'] + row['L_1']) if pd.notna(row['most_champ_1']) else 0,
                (row['W_2'] + row['L_2']) if pd.notna(row['most_champ_2']) else 0
            ]
            
            total_recent_games = sum(recent_games)
            total_season_games = sum(season_games)
            
            if total_recent_games == 0:
                return {
                    'loyalty_score': 0,
                    'confidence_score': 0,
                    **champ_loyalty_flags
                }
                
            # Calculate overlap score with enhanced weights
            loyalty_score = 0
            for idx, champ in enumerate(recent_champs):
                if champ in season_champs:
                    season_idx = season_champs.index(champ)
                    
                    recent_weight = recent_games[idx] / total_recent_games
                    season_weight = season_games[season_idx] / total_season_games
                    position_weight = 1.7 if idx == 0 else 1.3  # Adjusted weights for 2 champions
                    seasonal_position_weight = 1.3 if season_idx < 3 else 1.0
                    
                    combined_weight = (
                        recent_weight * 0.6 +
                        season_weight * 0.4
                    ) * position_weight * seasonal_position_weight
                    
                    loyalty_score += combined_weight
            
            # Calculate confidence score (adjusted for 2 champions)
            confidence_score = 0
            confidence_score += 0.5 if pd.notna(row['most_champ_1']) else 0  # Increased weight for main
            confidence_score += 0.2 if pd.notna(row['most_champ_2']) else 0  # Increased weight for second
            confidence_score += sum(0.1 for i in range(1, 4) if pd.notna(row[f'season_champ_{i}']))
            confidence_score += sum(0.05 for i in range(4, 8) if pd.notna(row[f'season_champ_{i}']))
            
            recent_games = sum((row[f'W_{i}'] + row[f'L_{i}']) if pd.notna(row[f'most_champ_{i}']) else 0 
                             for i in range(1, 3))  # Only top 2
            confidence_score += min(0.1, recent_games / 100)
            
            return {
                'loyalty_score': round(min(loyalty_score, 1.0), 3),
                'confidence_score': round(min(confidence_score, 1.0), 3),
                **champ_loyalty_flags
            }
            
        except Exception as e:
            print(f"Error calculating loyalty scores: {e}")
            return {
                'loyalty_score': 0,
                'confidence_score': 0,
                'recent_champ_1_loyal': 0,
                'recent_champ_2_loyal': 0
            }
    
    # Apply calculations and expand results to columns
    results = df.apply(get_loyalty_scores, axis=1)
    
    # Convert results to new columns
    df['champion_loyalty_score'] = results.apply(lambda x: x['loyalty_score'])
    df['loyalty_confidence_score'] = results.apply(lambda x: x['confidence_score'])
    df['recent_champ_1_loyal'] = results.apply(lambda x: x['recent_champ_1_loyal'])
    df['recent_champ_2_loyal'] = results.apply(lambda x: x['recent_champ_2_loyal'])
    
    return df

def optimize_feature_dtypes(df):
    """
    Optimize data types for feature columns using unsigned integers for non-negative values
    """
    df = df.copy()
    
    # Very small range integers (< 10 unique values) to uint8 (0 to 255)
    category_cols = {
        'region': 4,              # 4 unique values
        'team': 2,               # 2 unique values
        'champ_variety_score': 6, # 6 unique values
        'playstyle': 6,          # 6 unique values
        'most_role_1': 5,        # 5 unique values
        'most_role_2': 5,        # 5 unique values
        'most_role_3': 5,        # 5 unique values
        'role_specialization': 5,  # 5 unique values
        'recent_champ_1_loyal':2,  # 2 unique values
        'recent_champ_2_loyal':2   # 2 unique values
    }
    
    for col, n_unique in category_cols.items():
        if col in df.columns:
            if df[col].isna().any():
                # For columns with NaN, ensure proper handling
                df[col] = df[col].astype('category')
                # Fill NaN with a new category if needed
                df[col] = df[col].cat.add_categories(['Unknown']).fillna('Unknown')
            else:
                df[col] = df[col].astype('category')  # Regular unsigned integer
    
    # Medium range integers (< 200 unique values) to UInt8 (0 to 255)
    champion_cols = [
        'champion',         # 168 unique
        'team_champ1',     # 149 unique
        'team_champ2',     # 154 unique
        'team_champ3',     # 143 unique
        'team_champ4',     # 140 unique
        'opp_champ1',      # 144 unique
        'opp_champ2',      # 82 unique
        'opp_champ3',      # 145 unique
        'opp_champ4',      # 119 unique
        'opp_champ5',      # 110 unique
        'most_champ_1',    # 138 unique
        'most_champ_2',    # 134 unique
        'season_champ1',   # 139 unique
        'season_champ2',   # 129 unique
        'season_champ3',   # 132 unique
        '1_champ_name',    # 114 unique
        '2_champ_name',    # 114 unique
        '3_champ_name',    # 112 unique
        '4_champ_name',    # 111 unique
        '5_champ_name'     # 113 unique
    ]
    
    for col in champion_cols:
        if col in df.columns:
            df[col] = df[col].astype('UInt8')  # All champion IDs can fit in UInt8
    
    # Float32 columns (performance metrics and ratios)
    float32_cols = [
        'most_role_1_value',         # 15 unique
        'most_role_2_value',         # 11 unique
        'most_role_3_value',         # 15 unique
        'avg_kills',                 # 92 unique
        'avg_deaths',                # 58 unique
        'avg_assists',               # 132 unique
        'kda_ratio_profile',         # 286 unique
        'kill_participation_profile', # 37 unique
        'WR_1',                      # 64 unique
        'WR_2',                      # 23 unique
        'WR_3',                      # 10 unique
        'champion_loyalty_score',     # 156 unique
        'loyalty_confidence_score'    # 5 unique
    ]
    
    for col in float32_cols:
        if col in df.columns:
            df[col] = df[col].astype('float32')
    
    return df

def remove_unwanted_columns(df):
    """
    Removes specified columns from the DataFrame
    
    Args:
        df (pd.DataFrame): Input DataFrame
    
    Returns:
        pd.DataFrame: DataFrame with specified columns removed
    """
    df = df.copy()
    
    # Define columns to remove
    columns_to_remove = (
        # Time and basic stats
        ['date'] +
        ['total_games', 'wins', 'losses', 'win_rate'] +
        ['WR_1', 'WR_2', 'WR_3'] +
        ['most_champ_3'] +
        ['W_1', 'L_1', 'KDA_1', 'W_2', 'L_2', 'KDA_2', 'W_3', 'L_3', 'KDA_3'] +
        
        # Roles
        ['TOP', 'JUNGLE', 'MID', 'ADC', 'SUPPORT'] +
        
        # Season and weekly stats
        ['cs_ssn_1', 'cpm_ssn_1', 'kda_ssn_1', 'k_ssn_1', 'd_ssn_1', 'a_ssn_1', 'wr_ssn_1', 'games_ssn_1',
         'cs_ssn_2', 'cpm_ssn_2', 'kda_ssn_2', 'k_ssn_2', 'd_ssn_2', 'a_ssn_2', 'wr_ssn_2', 'games_ssn_2',
         'cs_ssn_3', 'cpm_ssn_3', 'kda_ssn_3', 'k_ssn_3', 'd_ssn_3', 'a_ssn_3', 'wr_ssn_3', 'games_ssn_3',
         'season_champ_4', 'cs_ssn_4', 'cpm_ssn_4', 'kda_ssn_4', 'k_ssn_4', 'd_ssn_4', 'a_ssn_4', 'wr_ssn_4', 'games_ssn_4',
         'season_champ_5', 'cs_ssn_5', 'cpm_ssn_5', 'kda_ssn_5', 'k_ssn_5', 'd_ssn_5', 'a_ssn_5', 'wr_ssn_5', 'games_ssn_5',
         'season_champ_6', 'cs_ssn_6', 'cpm_ssn_6', 'kda_ssn_6', 'k_ssn_6', 'd_ssn_6', 'a_ssn_6', 'wr_ssn_6', 'games_ssn_6',
         'season_champ_7', 'cs_ssn_7', 'cpm_ssn_7', 'kda_ssn_7', 'k_ssn_7', 'd_ssn_7', 'a_ssn_7', 'wr_ssn_7', 'games_ssn_7'] +
        
        # Weekly stats
        ['7d_champ_1', '7d_total_1', '7d_WR_1', '7d_champ_2', '7d_total_2', '7d_WR_2', 
         '7d_champ_3', '7d_total_3', '7d_WR_3'] +
        ['7d_W_1', '7d_L_1', '7d_W_2', '7d_L_2', '7d_W_3', '7d_L_3'] +
        
        # Mastery stats
        ['mastery_champ_1', 'm_lv_1', 'mastery_champ_2', 'm_lv_2', 'mastery_champ_3', 'm_lv_3',
         'mastery_champ_4', 'm_lv_4', 'mastery_champ_5', 'm_lv_5', 'mastery_champ_6', 'm_lv_6',
         'mastery_champ_7', 'm_lv_7', 'mastery_champ_8', 'm_lv_8', 'mastery_champ_9', 'm_lv_9',
         'mastery_champ_10', 'm_lv_10', 'mastery_champ_11', 'm_lv_11', 'mastery_champ_12', 'm_lv_12',
         'mastery_champ_13', 'm_lv_13', 'mastery_champ_14', 'm_lv_14', 'mastery_champ_15', 'm_lv_15',
         'mastery_champ_16', 'm_lv_16'] +
        
        # Champion scores and others
        ['1_champ_score', '2_champ_score', '3_champ_score', '4_champ_score', '5_champ_score'] +
        ['avg_tier', 'team'] +
        
        # Champions individual score
        ["Aatrox", "Ahri", "Akali", "Akshan", "Alistar", "Ambessa", "Amumu", "Anivia", "Annie", "Aphelios", 
         "Ashe", "Aurelion Sol", "Aurora", "Azir", "Bard", "Bel'Veth", "Blitzcrank", "Brand", "Braum", 
         "Briar", "Caitlyn", "Camille", "Cassiopeia", "Cho'Gath", "Corki", "Darius", "Diana", "Dr. Mundo", 
         "Draven", "Ekko", "Elise", "Evelynn", "Ezreal", "Fiddlesticks", "Fiora", "Fizz", "Galio", 
         "Gangplank", "Garen", "Gnar", "Gragas", "Graves", "Gwen", "Hecarim", "Heimerdinger", "Hwei", 
         "Illaoi", "Irelia", "Ivern", "Janna", "Jarvan IV", "Jax", "Jayce", "Jhin", "Jinx", "K'Sante", 
         "Kai'Sa", "Kalista", "Karma", "Karthus", "Kassadin", "Katarina", "Kayle", "Kayn", "Kennen", 
         "Kha'Zix", "Kindred", "Kled", "Kog'Maw", "LeBlanc", "Lee Sin", "Leona", "Lillia", "Lissandra", 
         "Lucian", "Lulu", "Lux", "Malphite", "Malzahar", "Maokai", "Master Yi", "Milio", "Miss Fortune", 
         "Mordekaiser", "Morgana", "Naafiri", "Nami", "Nasus", "Nautilus", "Neeko", "Nidalee", "Nilah", 
         "Nocturne", "Nunu & Willump", "Olaf", "Orianna", "Ornn", "Pantheon", "Poppy", "Pyke", "Qiyana", 
         "Quinn", "Rakan", "Rammus", "Rek'Sai", "Rell", "Renata Glasc", "Renekton", "Rengar", "Riven", 
         "Rumble", "Ryze", "Samira", "Sejuani", "Senna", "Seraphine", "Sett", "Shaco", "Shen", "Shyvana", 
         "Singed", "Sion", "Sivir", "Skarner", "Smolder", "Sona", "Soraka", "Swain", "Sylas", "Syndra", 
         "Tahm Kench", "Taliyah", "Talon", "Taric", "Teemo", "Thresh", "Tristana", "Trundle", "Tryndamere", 
         "Twisted Fate", "Twitch", "Udyr", "Urgot", "Varus", "Vayne", "Veigar", "Vel'Koz", "Vex", "Vi", 
         "Viego", "Viktor", "Vladimir", "Volibear", "Warwick", "Wukong", "Xayah", "Xerath", "Xin Zhao", 
         "Yasuo", "Yone", "Yorick", "Yuumi", "Zac", "Zed", "Zeri", "Ziggs", "Zilean", "Zoe", "Zyra"]
    )
    
    # Remove columns that exist in the DataFrame
    columns_to_remove = [col for col in columns_to_remove if col in df.columns]
    
    # Drop the columns
    df = df.drop(columns=columns_to_remove)
    
    # Print info about removed columns
    print(f"Removed {len(columns_to_remove)} columns")
    print(f"Remaining columns: {len(df.columns)}")
    
    return df


def apply_feature_engineering(df, n=5):
    """
    Performs feature engineering pipeline
    """
    df = df.copy()
    
    # Engineering pipeline
    transformations = [
        calculate_champ_variety_score,
        calculate_playstyle,
        get_most_role_3,
        calculate_role_specialization,
        calculate_champion_loyalty,
        lambda x: get_top_champion_scores(x, n),  # Add top 5 champions
        remove_unwanted_columns,
        optimize_feature_dtypes 
    ]
    
    for transform in transformations:
        try:
            print(f"Applying {transform.__name__}...")
            df = transform(df)
        except Exception as e:
            print(f"Error in {transform.__name__}: {str(e)}")
            raise
    
    return df