# app.py import gradio as gr import pandas as pd import requests import xgboost as xgb from huggingface_hub import hf_hub_download from app_training_df_getter import create_app_user_training_df import os import time from selenium import webdriver from selenium.webdriver.chrome.service import Service from selenium.webdriver.chrome.options import Options from webdriver_manager.chrome import ChromeDriverManager from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC # Define champion list for dropdowns CHAMPIONS = [ "Aatrox", "Ahri", "Akali", "Akshan", "Alistar", "Amumu", "Anivia", "Annie", "Aphelios", "Ashe", "Aurelion Sol", "Azir", "Bard", "Bel'Veth", "Blitzcrank", "Brand", "Braum", "Caitlyn", "Camille", "Cassiopeia", "Cho'Gath", "Corki", "Darius", "Diana", "Dr. Mundo", "Draven", "Ekko", "Elise", "Evelynn", "Ezreal", "Fiddlesticks", "Fiora", "Fizz", "Galio", "Gangplank", "Garen", "Gnar", "Gragas", "Graves", "Gwen", "Hecarim", "Heimerdinger", "Illaoi", "Irelia", "Ivern", "Janna", "Jarvan IV", "Jax", "Jayce", "Jhin", "Jinx", "Kai'Sa", "Kalista", "Karma", "Karthus", "Kassadin", "Katarina", "Kayle", "Kayn", "Kennen", "Kha'Zix", "Kindred", "Kled", "Kog'Maw", "KSante", "LeBlanc", "Lee Sin", "Leona", "Lillia", "Lissandra", "Lucian", "Lulu", "Lux", "Malphite", "Malzahar", "Maokai", "Master Yi", "Milio", "Miss Fortune", "Mordekaiser", "Morgana", "Naafiri", "Nami", "Nasus", "Nautilus", "Neeko", "Nidalee", "Nilah", "Nocturne", "Nunu & Willump", "Olaf", "Orianna", "Ornn", "Pantheon", "Poppy", "Pyke", "Qiyana", "Quinn", "Rakan", "Rammus", "Rek'Sai", "Rell", "Renata Glasc", "Renekton", "Rengar", "Riven", "Rumble", "Ryze", "Samira", "Sejuani", "Senna", "Seraphine", "Sett", "Shaco", "Shen", "Shyvana", "Singed", "Sion", "Sivir", "Skarner", "Sona", "Soraka", "Swain", "Sylas", "Syndra", "Tahm Kench", "Taliyah", "Talon", "Taric", "Teemo", "Thresh", "Tristana", "Trundle", "Tryndamere", "Twisted Fate", "Twitch", "Udyr", "Urgot", "Varus", "Vayne", "Veigar", "Vel'Koz", "Vex", "Vi", "Viego", "Viktor", "Vladimir", "Volibear", "Warwick", "Wukong", "Xayah", "Xerath", "Xin Zhao", "Yasuo", "Yone", "Yorick", "Yuumi", "Zac", "Zed", "Zeri", "Ziggs", "Zilean", "Zoe", "Zyra" ] # Load model try: model_path = hf_hub_download( repo_id="ivwhy/champion-predictor-model", filename="champion_predictor.json" ) model = xgb.Booster() model.load_model(model_path) except Exception as e: print(f"Error loading model: {e}") model = None # Functions def get_user_training_df(player_opgg_url): try: print("========= Inside get_user_training_df(player_opgg_url) ============= \n") print("player_opgg_url: ", player_opgg_url, "\n") # Add input validation if not player_opgg_url or not isinstance(player_opgg_url, str): return "Invalid URL provided" training_df = create_app_user_training_df(player_opgg_url) return training_df except Exception as e: # Add more detailed error information import traceback error_trace = traceback.format_exc() print(f"Full error trace:\n{error_trace}") return f"Error getting training data: {str(e)}" #return f"Error getting training data: {e}" def show_stats(player_opgg_url): """Display player statistics and recent matches""" if not player_opgg_url: return "Please enter a player link to OPGG", None try: training_features = get_user_training_df(player_opgg_url) if isinstance(training_features, str): # Error message return training_features, None wins = training_features['result'].sum() losses = len(training_features) - wins winrate = f"{(wins / len(training_features)) * 100:.0f}%" favorite_champions = ( training_features['champion'] .value_counts() .head(3) .index.tolist() ) stats_html = f"""

Player Stats

Wins: {wins} | Losses: {losses}

Winrate: {winrate}

Favorite Champions: {', '.join(favorite_champions)}

""" return stats_html, None except Exception as e: return f"Error processing stats: {e}", None def predict_champion(player_opgg_url, *champions): """Make prediction based on selected champions""" if not player_opgg_url or None in champions: return "Please fill in all fields" try: if model is None: return "Model not loaded properly" features = get_user_training_df(player_opgg_url) if isinstance(features, str): # Error message return features prediction = model.predict(features) predicted_champion = CHAMPIONS[prediction[0]] return f"Predicted champion: {predicted_champion}" except Exception as e: return f"Error making prediction: {e}" # Define your interface with gr.Blocks() as demo: gr.Markdown("# League of Legends Champion Prediction") with gr.Row(): player_opgg_url = gr.Textbox(label="OPGG Player URL") show_button = gr.Button("Show Player Stats") with gr.Row(): stats_output = gr.HTML(label="Player Statistics") recent_matches = gr.HTML(label="Recent Matches") with gr.Row(): champion_dropdowns = [ gr.Dropdown(choices=CHAMPIONS, label=f"Champion {i+1}") for i in range(9) ] with gr.Row(): predict_button = gr.Button("Predict") prediction_output = gr.Text(label="Prediction") # Set up event handlers show_button.click( fn=show_stats, inputs=[player_opgg_url], outputs=[stats_output, recent_matches] ) predict_button.click( fn=predict_champion, inputs=[player_opgg_url] + champion_dropdowns, outputs=prediction_output ) # Enable queuing #demo.queue(debug = True) demo.launch(debug=True) # For local testing if __name__ == "__main__": demo.launch() ''' code graveyard def get_player_stats(player_opgg_url): """Get player statistics from API""" # Placeholder - implement actual API call return { 'wins': 120, 'losses': 80, 'winrate': '60%', 'favorite_champions': ['Ahri', 'Zed', 'Yasuo'] } def get_recent_matches(player_opgg_url): """Get recent match history""" # Placeholder - implement actual API call return pd.DataFrame({ 'champion': ['Ahri', 'Zed', 'Yasuo'], 'result': ['Win', 'Loss', 'Win'], 'kda': ['8/2/10', '4/5/3', '12/3/7'] }) def prepare_features(player_opgg_url, champions): """Prepare features for model prediction""" # Placeholder - implement actual feature engineering features = [] # Transform champions into model features return pd.DataFrame([features]) '''