Spaces:
Sleeping
Sleeping
File size: 13,791 Bytes
63c21fa e787e05 63c21fa 5f87e71 63c21fa 5f87e71 63c21fa 5f87e71 63c21fa 8430cde 63c21fa 8430cde 63c21fa 8430cde 63c21fa 8430cde 63c21fa 8430cde 63c21fa ec66d6b 63c21fa 11292cd 63c21fa 11292cd 63c21fa 11292cd 63c21fa 11292cd 63c21fa 11292cd 63c21fa 11292cd 63c21fa 4d2787c 41530f7 4d2787c 7cf41a8 9b5ec61 4d2787c 9b5ec61 4d2787c 63c21fa ec66d6b 63c21fa ec66d6b 63c21fa 4d2787c 41530f7 4d2787c 9b5ec61 4d2787c 5f87e71 7cf41a8 63c21fa 7cf41a8 11292cd 7cf41a8 4d2787c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
from typing import Callable, Iterable, List, Optional, Tuple
from functools import partial
import os
os.environ["COMMANDLINE_ARGS"] = "--no-gradio-queue"
import altair as alt
from carabiner import print_err, colorblind_palette
from carabiner.mpl import grid
import gradio as gr
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
from numpy.typing import ArrayLike
import pandas as pd
from scipy.integrate import odeint
from scipy.optimize import approx_fprime, minimize
from scipy.stats import expon, gamma, poisson, probplot
DATA_PATH = f'{os.getcwd()}/stennett2022-table1.xlsx'
CLASS_COL = 'class'
YEAR_COL = 'year'
FIG_PANEL_SIZE = 3.5
INIT_PARAMS = (38.534, 1.743, 27.68, 12.1) # To speed up fitting on Spaces
NUMBER_DISCOVERED = "Discovered"
NUMBER_WO_R = "Without resistance"
NUMBER_W_R = "With resistance"
def load_data(
path: str = DATA_PATH,
class_col: str = CLASS_COL,
year_col_prefix: str = YEAR_COL
) -> pd.DataFrame:
df = pd.read_excel(path)
summaries = [df.groupby(col)[[class_col]]
.agg('count')
.rename(columns={class_col: f'{col}_count'})
for col in df if col.startswith(year_col_prefix)]
df = (
pd.concat(summaries, axis=1)
.sort_index()
.fillna(0.)
.cumsum()
.reset_index()
.rename(columns={'index': year_col_prefix})
.assign(**{
NUMBER_WO_R: lambda x: x[f'{year_col_prefix}_discovered_count'] - x[f'{year_col_prefix}_resistance_count'],
"time": lambda x: x[year_col_prefix] - x[year_col_prefix].min(),
})
.rename(columns={
YEAR_COL: "Year",
f'{year_col_prefix}_discovered_count': NUMBER_DISCOVERED,
f'{year_col_prefix}_resistance_count': NUMBER_W_R,
})
)
return df
def dg_dt(params: ArrayLike) -> Callable[[ArrayLike, ArrayLike], List[np.ndarray]]:
k, n, tlag, half_life = params
slope = 1.
def f(y: ArrayLike, t: ArrayLike):
m, D, R, g = y
dm = (n / 2.) * (1. + np.tanh(((t - tlag) ** slope)))
dD = ((k - D + 1.) / k) * dm
dR = (D - R) / (half_life / np.log(2.)) # Scale to half-life
dg = dD - dR
return [dm, dD, dR, dg]
return f
def dynamic_model(
t: float,
params: ArrayLike,
y0: Optional[ArrayLike] = None
) -> np.ndarray:
if y0 is None:
y0 = np.ones((4,))
o = odeint(
dg_dt(params),
y0=y0,
t=[0., t],
)
return o[-1,:] # -1 to take the endpoint only
def nloglik_poisson(y_pred: ArrayLike, y_true: ArrayLike) -> float:
return -np.sum(poisson.logpmf(y_true, mu=y_pred))
def dobj_fun(
model: Callable[[float, ArrayLike, Optional[ArrayLike]], np.ndarray],
df: pd.DataFrame
) -> Callable[[ArrayLike], float]:
def _dobj_fun(params: ArrayLike) -> float:
return nloglik_poisson(
[model(t, params)[1:-1] for t in df['time']],
y_true=df[[NUMBER_DISCOVERED, NUMBER_W_R]].values,
)
return _dobj_fun
def fit_to_data(
df: pd.DataFrame,
init_params: ArrayLike = INIT_PARAMS
) -> Tuple[float]:
init_params = np.asarray([float(p) for p in init_params])
print_err(f"Fitting with init params = {init_params}")
function_to_minimize = dobj_fun(dynamic_model, df)
jacobian = partial(approx_fprime, f=function_to_minimize)
print_err(f"Initial objective: {function_to_minimize(init_params)}, initial gradients:\n{jacobian(init_params)}")
do = minimize(
function_to_minimize,
x0=init_params,
jac=jacobian,
method="bfgs",
)
print(do)
return tuple(do.x.flatten())
def plot_prediction(
predicted_values: ArrayLike,
columns: ArrayLike,
index: ArrayLike,
year_col: str = "Year",
y_col: str = "Number of classes",
**kwargs
) -> alt.Chart:
df_pred = (
pd.DataFrame(
predicted_values,
columns=columns,
index=index,
)
.reset_index(
names=year_col
)
.melt(
id_vars=year_col,
value_vars=columns,
var_name='count_type',
value_name=y_col,
)
)
return alt.Chart(df_pred).mark_line().encode(**kwargs)
def plot_data_altair(
df: pd.DataFrame,
year_col: str = "Year",
y_col: str = "Number of classes",
params: Optional[ArrayLike] = None,
add_config: bool = True,
):
cols_to_plot = [NUMBER_DISCOVERED, NUMBER_W_R, NUMBER_WO_R]
df_m = df.melt(
id_vars=year_col,
value_vars=cols_to_plot,
var_name='count_type',
value_name=y_col,
)
print(df_m)
encoding = dict(
x=alt.X(year_col).scale(zero=False),
y=alt.Y(y_col),
color=alt.Color('count_type').title("").scale(range=colorblind_palette()),
)
figure = alt.Chart(df_m).mark_circle().encode(**encoding, tooltip=[year_col, y_col])
if params is not None:
params = np.asarray([float(p) for p in params])
print_err(f"Plotting with params = {params}")
predicted_values = np.asarray([dynamic_model(t, params)[1:] for t in df['time']])
figure += plot_prediction(
predicted_values=predicted_values,
columns=cols_to_plot,
index=df[year_col],
**encoding
)
if add_config:
return figure.configure_axis(
grid=False
).interactive()
else:
return figure
def plot_data_forecast_altair(
df: pd.DataFrame,
year_col: str = "Year",
y_col: str = "Number of classes",
params: Optional[ArrayLike] = None
):
params = np.asarray([float(p) for p in params])
old_params, fold_changes, forecast_time = params[:4], params[4:-1], params[-1]
new_params = [old_params[0] * fold_changes[0], old_params[1] * fold_changes[1], 0., old_params[-1] * fold_changes[-1]]
print_err(f"Plotting with params = {params}, forcasting for {forecast_time} years")
cols_to_plot = [NUMBER_DISCOVERED, NUMBER_W_R, NUMBER_WO_R]
figure = plot_data_altair(df, year_col, y_col, old_params, add_config=False)
encoding = dict(
x=alt.X(year_col).scale(zero=False),
y=alt.Y(y_col),
color=alt.Color('count_type').title(""),
)
figure += alt.Chart(pd.DataFrame(dict(
Year=[df["Year"].max()],
color=["lightgrey"]
))).mark_rule().encode(
x=alt.X('Year'),
color=alt.Color('Year:N', scale=None)
)
future_times = np.linspace(0., forecast_time, num=20)
y0 = dynamic_model(df['time'].values[-1], old_params)
new_values = np.array([dynamic_model(t, new_params, y0=y0)[1:] for t in future_times])
figure += plot_prediction(
predicted_values=new_values,
columns=cols_to_plot,
index=df["Year"].max() + future_times,
**encoding
)
return figure.configure_axis(
grid=False
).interactive()
pool_size_title = "**Effective pool size** | _effective number of antibiotic classes being sampled by drug discovery, from the [Coupon Collector problem](https://en.wikipedia.org/wiki/Coupon_collector%27s_problem)_"
discovery_rate_title = " **Maximal rate of new discoveries** | _effective number of samples from the pool of antibiotic classes per year_"
half_life_title = "**Resistance-free half-life** | _exponential decay from start of clinical use_"
def parameter_msg(*params) -> str:
params = np.asarray([float(p) for p in params])
pool_size, discovery_rate, discovery_lag, half_life = params
return f"""
{pool_size_title} | **{pool_size:.1f} classes**
{discovery_rate_title} | **{discovery_rate:.1f} / year**
**Discovery lag** | _time to maximal discovery rate_ | **{discovery_lag:.1f} years**
{half_life_title} | **{half_life:.1f} years**
"""
def forecast_msg(*params) -> str:
params = np.asarray([float(p) for p in params])
pool_size, discovery_rate, discovery_lag, half_life = params[:4]
x_pool_size, x_discovery_rate, x_half_life, _ = params[4:]
return f"""
{pool_size_title} | {pool_size:.1f} classes ⨉ {x_pool_size} = **{pool_size * x_pool_size:.1f} classes**
{discovery_rate_title} | {discovery_rate:.1f} / year ⨉ {x_discovery_rate} = **{x_discovery_rate * discovery_rate:.1f} / year**
{half_life_title} | {half_life:.1f} years ⨉ {x_half_life} = **{x_half_life * half_life:.1f} years**
"""
with gr.Blocks() as demo:
data = load_data()
gr.Markdown(
"""
# Dynamics of antibiotic discovery and resistance
[](https://mybinder.org/v2/gh/scbirlab/2024-Parkhill-BiochemJ/main?labpath=modelling-abx-discovery.ipynb)
Interface to demonstrate Figure 1 from [Parkhill SL, Johnson EO, Integrating bacterial molecular genetics with chemical biology for renewed antibacterial
drug discovery, _Biochemical Journal_ (2024) 481 (13): 839–864](https://doi.org/10.1042/BCJ20220062).
Access the notebook explaining the models [here](https://github.com/scbirlab/2024-Parkhill-BiochemJ/blob/main/modelling-abx-discovery.ipynb). Run
the notebook interactively in Binder [here](https://mybinder.org/v2/gh/scbirlab/2024-Parkhill-BiochemJ/main?labpath=modelling-abx-discovery.ipynb).
"""
)
with gr.Tab("Fitting parameters"):
gr.Markdown(
"""
# Finding the dynamic parameters
**Adjust the sliders** to alter the parameters underlying the rate of antibiotic discovery and resistance.
**Click "Fit parameters!"** to automatically find the best fitting parameters.
"""
)
with gr.Row():
param_sliders = [
gr.Slider(label="Pool size", info="Effective number of antibiotic classes being sampled by drug discovery",
value=30., minimum=0., maximum=100., step=.5, scale=10),
gr.Slider(label="Maximal discovery rate", info="Effective number of samples from the pool per year",
value=1., minimum=0., maximum=10., step=.1, scale=10),
gr.Slider(label="Discovery lag", info="Time to maximum discovery rate",
value=25., minimum=0., maximum=100., step=.5, scale=10),
gr.Slider(label="Resistance-free half-life", info="Relative to start of clinical use",
value=30., minimum=0., maximum=50., step=.2, scale=10),
]
fit_button = gr.Button("Fit parameters!", scale=6)
fit_message = gr.Markdown(parameter_msg, inputs=param_sliders)
plot = gr.Plot(
label="Model fit",
scale=4,
format="png",
)
gr.on(
triggers=[s.release for s in param_sliders],# + [refresh_button.click],
fn=parameter_msg,
inputs=param_sliders,
outputs=fit_message,
).then(
lambda *x: plot_data_altair(df=data, params=x),
inputs=param_sliders,
outputs=plot,
)
with gr.Tab("Forecasting the future!"):
gr.Markdown(
"""
# Forecasting future discovery and resistance!
**Adjust the sliders** to see how changes in these parameters would change the future.
**Click "Fit parameters!"** on the previous tab to set the parameters to fit historical data,
then come back to this tab to check the forecast.
"""
)
with gr.Row():
forecast_sliders = [
gr.Slider(label="⨉ pool size", info="Increase in accessible antibiotic classes",
value=1., minimum=0., maximum=10., step=.2, scale=10),
gr.Slider(label="⨉ discovery rate", info="Increase in rate of discovery",
value=1., minimum=0., maximum=10., step=.2, scale=10),
gr.Slider(label="⨉ half-life", info="Increase in resistance-free half-life",
value=1., minimum=0., maximum=10., step=.2, scale=10),
gr.Slider(label="🔮", info="In years",
value=100., minimum=0., maximum=200., step=.5, scale=10),
]
param_and_forecast_sliders = param_sliders + forecast_sliders
fit_message = gr.Markdown(forecast_msg, inputs=param_and_forecast_sliders)
forecast = gr.Plot(
label="Forecast",
scale=4,
format="png",
)
gr.on(
triggers=[s.release for s in param_and_forecast_sliders],
fn=forecast_msg,
inputs=param_and_forecast_sliders,
outputs=fit_message,
).then(
lambda *x: plot_data_forecast_altair(df=data, params=x),
inputs=param_and_forecast_sliders,
outputs=forecast,
)
(fit_button
.click(lambda *x: fit_to_data(data), inputs=None, outputs=param_sliders)
.then(lambda *x: plot_data_altair(df=data, params=x), inputs=param_sliders, outputs=plot)
.then(lambda *x: plot_data_forecast_altair(df=data, params=x), inputs=param_and_forecast_sliders, outputs=forecast))
(demo
.load(lambda *x: plot_data_altair(df=data, params=x), inputs=param_sliders, outputs=plot)
.then(lambda *x: plot_data_forecast_altair(df=data, params=x), inputs=param_and_forecast_sliders, outputs=forecast))
demo.queue()
demo.launch(share=True) |