Spaces:
Sleeping
Sleeping
File size: 7,140 Bytes
44ee556 34aed91 44ee556 34aed91 44ee556 05fa320 44ee556 05fa320 44ee556 05fa320 44ee556 05fa320 44ee556 05fa320 44ee556 05fa320 44ee556 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
"""Gradio demo for schemist."""
from typing import Iterable, List, Union
from io import TextIOWrapper
import os
os.environ["COMMANDLINE_ARGS"] = "--no-gradio-queue"
from carabiner import cast, print_err
from carabiner.pd import read_table
import gradio as gr
import nemony as nm
import numpy as np
import pandas as pd
from rdkit.Chem import Draw, Mol
import schemist as sch
from schemist.converting import (
_TO_FUNCTIONS,
_FROM_FUNCTIONS,
convert_string_representation,
_x2mol,
)
from schemist.tables import converter
def load_input_data(file: TextIOWrapper) -> pd.DataFrame:
df = read_table(file.name)
string_cols = list(df.select_dtypes(exclude=[np.number]))
df = gr.Dataframe(value=df, visible=True)
return df, gr.Dropdown(choices=string_cols, interactive=True)
def _clean_split_input(strings: str) -> List[str]:
return [s2.strip() for s in strings.split("\n") for s2 in s.split(",")]
def _convert_input(
strings: str,
input_representation: str = 'smiles',
output_representation: Union[Iterable[str], str] = 'smiles'
) -> List[str]:
strings = _clean_split_input(strings)
converted = convert_string_representation(
strings=strings,
input_representation=input_representation,
output_representation=output_representation,
)
return {key: list(map(str, cast(val, to=list))) for key, val in converted.items()}
def convert_one(
strings: str,
input_representation: str = 'smiles',
output_representation: Union[Iterable[str], str] = 'smiles'
):
df = pd.DataFrame({
input_representation: _clean_split_input(strings),
})
return gr.DataFrame(
convert_file(
df=df,
column=input_representation,
input_representation=input_representation,
output_representation=output_representation,
),
visible=True
)
def convert_file(
df: pd.DataFrame,
column: str = 'smiles',
input_representation: str = 'smiles',
output_representation: Union[str, Iterable[str]] = 'smiles'
):
message = f"Converting from {input_representation} to {output_representation}..."
print_err(message)
gr.Info(message, duration=3)
errors, df = converter(
df=df,
column=column,
input_representation=input_representation,
output_representation=output_representation,
)
df = df[
cast(output_representation, to=list) +
[col for col in df if col not in output_representation]
]
all_err = sum(err for key, err in errors.items())
message = (
f"Converted {df.shape[0]} molecules from "
f"{input_representation} to {output_representation} "
f"with {all_err} errors!"
)
print_err(message)
gr.Info(message, duration=5)
return df
def draw_one(
strings: Union[Iterable[str], str],
input_representation: str = 'smiles'
):
_ids = _convert_input(
strings,
input_representation,
["inchikey", "id"],
)
mols = cast(_x2mol(_clean_split_input(strings), input_representation), to=list)
if isinstance(mols, Mol):
mols = [mols]
return Draw.MolsToGridImage(
mols,
molsPerRow=min(3, len(mols)),
subImgSize=(300, 300),
legends=["\n".join(items) for items in zip(*_ids.values())],
)
def download_table(
df: pd.DataFrame
) -> str:
df_hash = nm.hash(pd.util.hash_pandas_object(df).values)
filename = f"converted-{df_hash}.csv"
df.to_csv(filename, index=False)
return gr.DownloadButton(value=filename, visible=True)
with gr.Blocks() as demo:
gr.Markdown(
"""
# Chemical string format converter
"""
)
with gr.Tab(label="Paste one per line"):
input_format_single = gr.Dropdown(
label="Input string format",
choices=list(_FROM_FUNCTIONS),
value="smiles",
interactive=True,
)
input_line = gr.Textbox(
label="Input",
placeholder="Paste your molecule here, one per line",
lines=2,
interactive=True,
submit_btn=True,
)
output_format_single = gr.CheckboxGroup(
label="Output format",
choices=list(_TO_FUNCTIONS),
value=["id", "pubchem_name"],
interactive=True,
)
download_single = gr.DownloadButton(
label="Download converted data",
visible=False,
)
with gr.Row():
output_line = gr.DataFrame(
label="Converted",
interactive=False,
visible=False,
)
drawing = gr.Image(label="Chemical structures")
gr.on(
[
# go_button.click,
input_line.submit,
],
fn=convert_one,
inputs=[
input_line,
input_format_single,
output_format_single,
],
outputs={
output_line,
}
).then(
draw_one,
inputs=[
input_line,
input_format_single,
],
outputs=drawing,
).then(
download_table,
inputs=output_line,
outputs=download_single
)
with gr.Tab("Convert a file"):
input_file = gr.File(
label="Upload a table of chemical compounds here",
file_types=[".xlsx", ".csv", ".tsv", ".txt"],
)
with gr.Row():
input_column = gr.Dropdown(
label="Input column name",
choices=[],
)
input_format = gr.Dropdown(
label="Input string format",
choices=list(_FROM_FUNCTIONS),
value="smiles",
interactive=True,
)
output_format = gr.CheckboxGroup(
label="Output format",
choices=list(_TO_FUNCTIONS),
value=["id", "selfies"],
interactive=True,
)
go_button2 = gr.Button(
value="Convert molecules!",
)
download = gr.DownloadButton(
label="Download converted data",
visible=False,
)
input_data = gr.Dataframe(
label="Input data",
max_height=100,
visible=False,
interactive=False,
)
input_file.upload(
load_input_data,
inputs=[input_file],
outputs=[input_data, input_column]
)
go_button2.click(
convert_file,
inputs=[
input_data,
input_column,
input_format,
output_format,
],
outputs={
input_data,
}
).then(
download_table,
inputs=input_data,
outputs=download
)
if __name__ == "__main__":
demo.queue()
demo.launch(share=True)
|