Eachan Johnson
commited on
Commit
·
6335878
1
Parent(s):
2e4ba77
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Gradio demo for schemist."""
|
2 |
+
|
3 |
+
from typing import Iterable, List, Union
|
4 |
+
from io import TextIOWrapper
|
5 |
+
import os
|
6 |
+
os.environ["COMMANDLINE_ARGS"] = "--no-gradio-queue"
|
7 |
+
|
8 |
+
from carabiner import cast, print_err
|
9 |
+
from carabiner.pd import read_table
|
10 |
+
import gradio as gr
|
11 |
+
import nemony as nm
|
12 |
+
import numpy as np
|
13 |
+
import pandas as pd
|
14 |
+
from rdkit.Chem import Draw, Mol
|
15 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, PreTrainedModel
|
16 |
+
import schemist as sch
|
17 |
+
from schemist.converting import (
|
18 |
+
_TO_FUNCTIONS,
|
19 |
+
_FROM_FUNCTIONS,
|
20 |
+
convert_string_representation,
|
21 |
+
_x2mol,
|
22 |
+
)
|
23 |
+
from schemist.tables import converter
|
24 |
+
|
25 |
+
MODELS = (
|
26 |
+
"scbirlab/lchemme-base-zinc22-lteq300",
|
27 |
+
"scbirlab/lchemme-base-dosedo-lteq300",
|
28 |
+
"facebook/bart-base",
|
29 |
+
)
|
30 |
+
|
31 |
+
models = {model_name: (
|
32 |
+
AutoTokenizer.from_pretrained(model_name, cache_dir="model-cache"),
|
33 |
+
AutoModelForSeq2SeqLM.from_pretrained(model_name, cache_dir="model-cache"),
|
34 |
+
) for model_name in MODELS}
|
35 |
+
|
36 |
+
def load_input_data(file: TextIOWrapper) -> pd.DataFrame:
|
37 |
+
df = read_table(file.name)
|
38 |
+
string_cols = list(df.select_dtypes(exclude=[np.number]))
|
39 |
+
df = gr.Dataframe(value=df, visible=True)
|
40 |
+
return df, gr.Dropdown(choices=string_cols, interactive=True)
|
41 |
+
|
42 |
+
|
43 |
+
def _clean_split_input(strings: str) -> List[str]:
|
44 |
+
return [s2.strip() for s in strings.split("\n") for s2 in s.split(",")]
|
45 |
+
|
46 |
+
|
47 |
+
def _convert_input(
|
48 |
+
strings: str,
|
49 |
+
input_representation: str = 'smiles',
|
50 |
+
output_representation: Union[Iterable[str], str] = 'smiles'
|
51 |
+
) -> List[str]:
|
52 |
+
strings = _clean_split_input(strings)
|
53 |
+
converted = convert_string_representation(
|
54 |
+
strings=strings,
|
55 |
+
input_representation=input_representation,
|
56 |
+
output_representation=output_representation,
|
57 |
+
)
|
58 |
+
return {
|
59 |
+
key: list(map(str, cast(val, to=list)))
|
60 |
+
for key, val in converted.items()
|
61 |
+
}
|
62 |
+
|
63 |
+
|
64 |
+
def model_convert(
|
65 |
+
df: pd.DataFrame,
|
66 |
+
name: str,
|
67 |
+
tokenizer,
|
68 |
+
model: PreTrainedModel
|
69 |
+
) -> pd.DataFrame:
|
70 |
+
|
71 |
+
model_basename = name.split("/")[-1]
|
72 |
+
inputs = tokenizer(df["inputs"].tolist(), return_tensors="pt")
|
73 |
+
model.eval()
|
74 |
+
model_args = {key: inputs[key] for key in ['input_ids', 'attention_mask']}
|
75 |
+
outputs = model(
|
76 |
+
**model_args,
|
77 |
+
# decoder_input_ids=model_args['input_ids'],
|
78 |
+
)
|
79 |
+
output_smiles = tokenizer.batch_decode(
|
80 |
+
outputs.logits.argmax(dim=-1),
|
81 |
+
skip_special_tokens=True,
|
82 |
+
clean_up_tokenization_spaces=True,
|
83 |
+
)
|
84 |
+
output_inchikey = convert_string_representation(
|
85 |
+
strings=output_smiles,
|
86 |
+
output_representation="inchikey",
|
87 |
+
)
|
88 |
+
return pd.DataFrame({
|
89 |
+
f"{model_basename}_smiles": output_smiles,
|
90 |
+
f"{model_basename}_inchikey": output_inchikey,
|
91 |
+
})
|
92 |
+
|
93 |
+
|
94 |
+
def convert_one(
|
95 |
+
strings: str,
|
96 |
+
output_representation: Union[Iterable[str], str] = MODELS[0]
|
97 |
+
):
|
98 |
+
input_representation: str = 'smiles'
|
99 |
+
df = pd.DataFrame({
|
100 |
+
"inputs": _clean_split_input(strings),
|
101 |
+
})
|
102 |
+
|
103 |
+
true_canonical_df = convert_file(
|
104 |
+
df=df,
|
105 |
+
column="inputs",
|
106 |
+
input_representation=input_representation,
|
107 |
+
output_representation=["smiles", "inchikey"]
|
108 |
+
)
|
109 |
+
|
110 |
+
output_representation = cast(output_representation, to=list)
|
111 |
+
model_canonical_dfs = {
|
112 |
+
model_name: model_convert(df, model_name, *models[model_name])
|
113 |
+
for model_name in output_representation
|
114 |
+
}
|
115 |
+
|
116 |
+
return gr.DataFrame(
|
117 |
+
pd.concat([true_canonical_df] + list(model_canonical_dfs.values()), axis=1),
|
118 |
+
visible=True
|
119 |
+
)
|
120 |
+
|
121 |
+
|
122 |
+
def convert_file(
|
123 |
+
df: pd.DataFrame,
|
124 |
+
column: str = 'smiles',
|
125 |
+
input_representation: str = 'smiles',
|
126 |
+
output_representation: Union[str, Iterable[str]] = 'smiles'
|
127 |
+
):
|
128 |
+
message = f"Converting from {input_representation} to {output_representation}..."
|
129 |
+
print_err(message)
|
130 |
+
gr.Info(message, duration=3)
|
131 |
+
errors, df = converter(
|
132 |
+
df=df,
|
133 |
+
column=column,
|
134 |
+
input_representation=input_representation,
|
135 |
+
output_representation=output_representation,
|
136 |
+
)
|
137 |
+
df = df[
|
138 |
+
cast(output_representation, to=list) +
|
139 |
+
[col for col in df if col not in output_representation]
|
140 |
+
]
|
141 |
+
all_err = sum(err for key, err in errors.items())
|
142 |
+
message = (
|
143 |
+
f"Converted {df.shape[0]} molecules from "
|
144 |
+
f"{input_representation} to {output_representation} "
|
145 |
+
f"with {all_err} errors!"
|
146 |
+
)
|
147 |
+
print_err(message)
|
148 |
+
gr.Info(message, duration=5)
|
149 |
+
return df
|
150 |
+
|
151 |
+
|
152 |
+
def draw_one(
|
153 |
+
strings: Union[Iterable[str], str]
|
154 |
+
):
|
155 |
+
input_representation: str = 'smiles'
|
156 |
+
_ids = _convert_input(
|
157 |
+
strings,
|
158 |
+
input_representation,
|
159 |
+
["inchikey", "id"],
|
160 |
+
)
|
161 |
+
mols = cast(_x2mol(_clean_split_input(strings), input_representation), to=list)
|
162 |
+
if isinstance(mols, Mol):
|
163 |
+
mols = [mols]
|
164 |
+
return Draw.MolsToGridImage(
|
165 |
+
mols,
|
166 |
+
molsPerRow=min(3, len(mols)),
|
167 |
+
subImgSize=(300, 300),
|
168 |
+
legends=["\n".join(items) for items in zip(*_ids.values())],
|
169 |
+
)
|
170 |
+
|
171 |
+
|
172 |
+
def download_table(
|
173 |
+
df: pd.DataFrame
|
174 |
+
) -> str:
|
175 |
+
df_hash = nm.hash(pd.util.hash_pandas_object(df).values)
|
176 |
+
filename = f"converted-{df_hash}.csv"
|
177 |
+
df.to_csv(filename, index=False)
|
178 |
+
return gr.DownloadButton(value=filename, visible=True)
|
179 |
+
|
180 |
+
|
181 |
+
with gr.Blocks() as demo:
|
182 |
+
|
183 |
+
gr.Markdown(
|
184 |
+
"""
|
185 |
+
# SMILES canonicalization with LChemME
|
186 |
+
|
187 |
+
Interface to demonstrate SMILES canonicalization using Large Chemical Models pre-trained using
|
188 |
+
[LChemME](https://github.com/scbirlab/lchemme).
|
189 |
+
|
190 |
+
"""
|
191 |
+
)
|
192 |
+
|
193 |
+
input_line = gr.Textbox(
|
194 |
+
label="Input",
|
195 |
+
placeholder="Paste your molecule(s) here, one per line",
|
196 |
+
lines=2,
|
197 |
+
interactive=True,
|
198 |
+
submit_btn=True,
|
199 |
+
)
|
200 |
+
output_format_single = gr.CheckboxGroup(
|
201 |
+
label="Use model(s):",
|
202 |
+
choices=list(MODELS),
|
203 |
+
value=MODELS[:1],
|
204 |
+
interactive=True,
|
205 |
+
)
|
206 |
+
examples = gr.Examples(
|
207 |
+
examples=[
|
208 |
+
["CC(Oc1c(cccc1)C(=O)N)=O", MODELS[0]],
|
209 |
+
["O=S1(N([C@H](C)COC(NC[3H])=O)C[C@H]([C@@H](Oc2cc(-c3cnc(c(c3)C)OC)ccc21)CN(C)C(c1c(C)c(sc1Cl)C)=O)C)=O", MODELS[1]],
|
210 |
+
["CC(Oc1ccccc1C(O)=O)=O", MODELS[0]],
|
211 |
+
["CC(Oc1ccccc1C(O)=O)=O", MODELS[2]],
|
212 |
+
],
|
213 |
+
inputs=[input_line, output_format_single],
|
214 |
+
)
|
215 |
+
download_single = gr.DownloadButton(
|
216 |
+
label="Download converted data",
|
217 |
+
visible=False,
|
218 |
+
)
|
219 |
+
|
220 |
+
output_line = gr.DataFrame(
|
221 |
+
label="Converted",
|
222 |
+
interactive=False,
|
223 |
+
visible=False,
|
224 |
+
)
|
225 |
+
drawing = gr.Image(label="Chemical structures")
|
226 |
+
|
227 |
+
gr.on(
|
228 |
+
[
|
229 |
+
input_line.submit,
|
230 |
+
],
|
231 |
+
fn=convert_one,
|
232 |
+
inputs=[
|
233 |
+
input_line,
|
234 |
+
output_format_single,
|
235 |
+
],
|
236 |
+
outputs={
|
237 |
+
output_line,
|
238 |
+
}
|
239 |
+
).then(
|
240 |
+
draw_one,
|
241 |
+
inputs=[
|
242 |
+
input_line,
|
243 |
+
],
|
244 |
+
outputs=drawing,
|
245 |
+
).then(
|
246 |
+
download_table,
|
247 |
+
inputs=output_line,
|
248 |
+
outputs=download_single
|
249 |
+
)
|
250 |
+
|
251 |
+
if __name__ == "__main__":
|
252 |
+
demo.queue()
|
253 |
+
demo.launch(share=True)
|
254 |
+
|