File size: 15,336 Bytes
597542d
 
 
 
 
7835e78
597542d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
"""Gradio demo for schemist."""

from typing import Iterable, List, Optional, Union
from io import TextIOWrapper
import os
# os.environ["COMMANDLINE_ARGS"] = "--no-gradio-queue"

from carabiner import cast, print_err
from carabiner.pd import read_table
from duvida.autoclass import AutoModelBox
import gradio as gr
import nemony as nm
import numpy as np
import pandas as pd
from rdkit.Chem import Draw, Mol
from schemist.converting import (
    _TO_FUNCTIONS,
    _FROM_FUNCTIONS, 
    convert_string_representation, 
    _x2mol,
)
from schemist.tables import converter
import torch

HEADER_FILE = os.path.join("sources", "header.md")
MODEL_REPOS = {
    "Klebsiella pneumoniae": "hf://scbirlab/spark-dv-fp-2503-kpn",
}

MODELBOXES = {
    key: AutoModelBox.from_pretrained(val, cache_dir="./cache")
    for key, val in MODEL_REPOS.items()
}

EXTRA_METRICS = {
    "log10(variance)": lambda modelbox, candidates: modelbox.prediction_variance(candidates=candidates).map(lambda x: {modelbox._variance_key: torch.log10(x[modelbox._variance_key])}), 
    "Tanimoto nearest neighbor to training data": lambda modelbox, candidates: modelbox.tanimoto_nn(candidates=candidates), 
    "Doubtscore": lambda modelbox, candidates: modelbox.doubtscore(candidates=candidates).map(lambda x: {"doubtscore": torch.log10(x["doubtscore"])}), 
    "Information sensitivity (approx.)": lambda modelbox, candidates: modelbox.information_sensitivity(candidates=candidates, optimality_approximation=True, approximator="squared_jacobian").map(lambda x: {"information sensitivity": torch.log10(x["information sensitivity"])}),
}

def load_input_data(file: TextIOWrapper) -> pd.DataFrame:
    df = read_table(file.name)
    string_cols = list(df.select_dtypes(exclude=[np.number]))
    df = gr.Dataframe(value=df, visible=True)
    return df, gr.Dropdown(choices=string_cols, interactive=True)
    

def _clean_split_input(strings: str) -> List[str]:
    return [s2.strip() for s in strings.split("\n") for s2 in s.split(",")]


def _convert_input(
    strings: str,
    input_representation: str = 'smiles', 
    output_representation: Union[Iterable[str], str] = 'smiles'
) -> List[str]:
    strings = _clean_split_input(strings)
    converted = convert_string_representation(
        strings=strings, 
        input_representation=input_representation, 
        output_representation=output_representation,
    )
    return {key: list(map(str, cast(val, to=list))) for key, val in converted.items()}


def convert_one(
    strings: str,
    input_representation: str = 'smiles', 
    output_representation: Union[Iterable[str], str] = 'smiles'
):

    df = pd.DataFrame({
        input_representation: _clean_split_input(strings),
    })

    return convert_file(
        df=df,
        column=input_representation,
        input_representation=input_representation,
        output_representation=output_representation,
    )


def predict_one(
    strings: str,
    input_representation: str = 'smiles', 
    predict: Union[Iterable[str], str] = 'smiles', 
    extra_metrics: Optional[Union[Iterable[str], str]] = None
):
    if extra_metrics is None:
        extra_metrics = []
    else:
        extra_metrics = cast(extra_metrics, to=list)
    prediction_df = convert_one(
        strings=strings,
        input_representation=input_representation,
        output_representation=['id', 'smiles', 'inchikey', "mwt", "clogp"],
    )
    species_to_predict = cast(predict, to=list)
    prediction_cols = []
    for species in species_to_predict:
        message = f"Predicting for species: {species}"
        print_err(message)
        gr.Info(message, duration=3)
        this_modelbox = MODELBOXES[species]
        this_features = this_modelbox._input_cols
        this_labels = this_modelbox._label_cols
        this_prediction_input = (
            prediction_df
            .rename(columns={
                "smiles": this_features[0],
            })
            .assign(**{label: np.nan for label in this_labels})
        )
        print(this_prediction_input)
        prediction = this_modelbox.predict(
            data=this_prediction_input,
            features=this_features,
            labels=this_labels,
            aggregator="mean",
            cache="./cache"
        ).with_format("numpy")["__prediction__"].flatten()
        print(prediction)
        this_col = f"{species}: predicted MIC (µM)"
        prediction_df[this_col] = np.power(10., -prediction) * 1e6
        prediction_cols.append(this_col)

        for extra_metric in extra_metrics:
            # this_modelbox._input_training_data = this_modelbox._input_training_data.remove_columns([this_modelbox._in_key])
            this_col = f"{species}: {extra_metric}"
            prediction_cols.append(this_col)
            print(">>>", this_modelbox._input_training_data)
            print(">>>", this_modelbox._input_training_data.format)
            print(">>>", this_modelbox._in_key, this_modelbox._out_key)
            this_extra = (
                EXTRA_METRICS[extra_metric](
                    this_modelbox,
                    this_prediction_input,
                )
                .with_format("numpy")
            )
            prediction_df[this_col] = this_extra[this_extra.column_names[-1]]
        
    return gr.DataFrame(
        prediction_df[['id'] + prediction_cols + ['smiles', 'inchikey', "mwt", "clogp"]],
        visible=True
    )


def convert_file(
    df: pd.DataFrame, 
    column: str = 'smiles',
    input_representation: str = 'smiles',
    output_representation: Union[str, Iterable[str]] = 'smiles'
):
    message = f"Converting from {input_representation} to {output_representation}..."
    print_err(message)
    gr.Info(message, duration=3)
    errors, df = converter(
        df=df,
        column=column,
        input_representation=input_representation,
        output_representation=output_representation,
    )
    df = df[
        cast(output_representation, to=list) +
        [col for col in df if col not in output_representation]
    ]
    all_err = sum(err for key, err in errors.items())
    message = (
        f"Converted {df.shape[0]} molecules from "
        f"{input_representation} to {output_representation} "
        f"with {all_err} errors!"
    )
    print_err(message)
    gr.Info(message, duration=5)
    return df


def predict_file(
    df: pd.DataFrame, 
    column: str = 'smiles',
    input_representation: str = 'smiles',
    extra_metrics: Optional[Union[Iterable[str], str]] = None
):
    if extra_metrics is None:
        extra_metrics = []
    else:
        extra_metrics = cast(extra_metrics, to=list)
    prediction_df = convert_file(
        df,
        column=column,
        input_representation=input_representation,
        output_representation=["id", "smiles", "inchikey", "mwt", "clogp"],
    )
    species_to_predict = cast(predict, to=list)
    prediction_cols = []
    for species in species_to_predict:
        this_modelbox = MODELBOXES[species]
        this_features = this_modelbox._input_cols
        this_labels = this_modelbox._label_cols
        this_prediction_input = (
            prediction_df
            .rename(columns={
                "smiles": this_features[0],
            })
            .assign(**{label: np.nan for label in this_labels})
        )
        prediction = this_modelbox.predict(
            data=this_prediction_input,
            features=this_features,
            labels=this_labels,
            cache="./cache"
        ).with_format("numpy")["__prediction__"].flatten()
        print(prediction)
        this_col = f"{species}: predicted MIC (µM)"
        prediction_df[this_col] = np.power(10., -prediction) * 1e6
        prediction_cols.append(this_col)

        for extra_metric in extra_metrics:
            # this_modelbox._input_training_data = this_modelbox._input_training_data.remove_columns([this_modelbox._in_key])
            this_col = f"{species}: {extra_metric}"
            prediction_cols.append(this_col)
            print(">>>", this_modelbox._input_training_data)
            this_extra = (
                EXTRA_METRICS[extra_metric](
                    this_modelbox,
                    this_prediction_input,
                )
                .with_format("numpy")
            )
            prediction_df[this_col] = this_extra[this_extra.column_names[0]]

    return prediction_df[['id'] + prediction_cols + ['smiles', 'inchikey', "mwt", "clogp"]]

def draw_one(
    strings: Union[Iterable[str], str],
    input_representation: str = 'smiles'
):
    _ids = _convert_input(
        strings, 
        input_representation, 
        ["inchikey", "id", "pubchem_name"],
    )
    mols = cast(_x2mol(_clean_split_input(strings), input_representation), to=list)
    if isinstance(mols, Mol):
        mols = [mols]
    return Draw.MolsToGridImage(
        mols,
        molsPerRow=min(3, len(mols)), 
        subImgSize=(450, 450),
        legends=["\n".join(items) for items in zip(*_ids.values())],
    )


def download_table(
    df: pd.DataFrame
) -> str:
    df_hash = nm.hash(pd.util.hash_pandas_object(df).values)
    filename = f"converted-{df_hash}.csv"
    df.to_csv(filename, index=False)
    return gr.DownloadButton(value=filename, visible=True)

with gr.Blocks() as demo:

    with open(HEADER_FILE, 'r') as f:
        header_md = f.read()
    gr.Markdown(header_md)

    with gr.Tab(label="Paste one per line"):
        input_format_single = gr.Dropdown(
            label="Input string format",
            choices=list(_FROM_FUNCTIONS),
            value="smiles",
            interactive=True,
        )
        input_line = gr.Textbox(
            label="Input",
            placeholder="Paste your molecule here, one per line",
            lines=2,
            interactive=True,
            submit_btn=True,
        )
        output_species_single = gr.CheckboxGroup(
            label="Species for prediction",
            choices=list(MODEL_REPOS),
            value=list(MODEL_REPOS)[:1],
            interactive=True,
        )
        extra_metric = gr.CheckboxGroup(
            label="Extra metrics (can increase calculation time!)",
            choices=list(EXTRA_METRICS),
            value=list(EXTRA_METRICS)[:2],
            interactive=True,
        )
        examples = gr.Examples(
            examples=[
                [
                    '\n'.join([
                        "C1CC1N2C=C(C(=O)C3=CC(=C(C=C32)N4CCNCC4)F)C(=O)O",
                        "CN1C(=NC(=O)C(=O)N1)SCC2=C(N3[C@@H]([C@@H](C3=O)NC(=O)/C(=N\OC)/C4=CSC(=N4)N)SC2)C(=O)O",
                        "CC(=O)NC[C@H]1CN(C(=O)O1)C2=CC(=C(C=C2)N3CCOCC3)F",
                        "C1CC2=CC(=NC=C2OC1)CNC3CCN(CC3)C[C@@H]4CN5C(=O)C=CC6=C5N4C(=O)C=N6",
                    ]), 
                    list(MODEL_REPOS)[0],
                    list(EXTRA_METRICS)[:2],
                 ],  # cipro, ceftriaxone, linezolid, gepotidacin
                [
                    '\n'.join([
                        "C[C@H]1[C@H]([C@H](C[C@@H](O1)O[C@H]2C[C@@](CC3=C2C(=C4C(=C3O)C(=O)C5=C(C4=O)C(=CC=C5)OC)O)(C(=O)CO)O)N)O",
                        "CC1([C@@H](N2[C@H](S1)[C@@H](C2=O)NC(=O)[C@@H](C3=CC=CC=C3)N)C(=O)O)C",
                        "CC1([C@@H](N2[C@H](S1)[C@@H](C2=O)NC(=O)[C@@H](C3=CC=C(C=C3)O)N)C(=O)O)C", 
                    ]), 
                    list(MODEL_REPOS)[0],
                    list(EXTRA_METRICS)[:2],
                ],  # doxorubicin, ampicillin, amoxicillin
                [
                    '\n'.join([
                        "C1=C(SC(=N1)SC2=NN=C(S2)N)[N+](=O)[O-]",
                        "C1CN(CCC12C3=CC=CC=C3NC(=O)O2)CCC4=CC=C(C=C4)C(F)(F)F",
                        "COC1=CC(=CC(=C1OC)OC)CC2=CN=C(N=C2N)N",
                        "CC1=CC(=NO1)NS(=O)(=O)C2=CC=C(C=C2)N",
                        "C1[C@@H]([C@H]([C@@H]([C@H]([C@@H]1NC(=O)[C@H](CCN)O)O[C@@H]2[C@@H]([C@H]([C@@H]([C@H](O2)CO)O)N)O)O)O[C@@H]3[C@@H]([C@H]([C@@H]([C@H](O3)CN)O)O)O)N\nC1=CN=CC=C1C(=O)NN", 
                    ]), 
                    list(MODEL_REPOS)[0],
                    list(EXTRA_METRICS)[:2],
                ],  # Halicin, Abaucin, Trimethoprim, Sulfamethoxazole, Amikacin, Isoniazid
            ],
            example_labels=[
                "Ciprofloxacin, Ceftriaxone, Linezolid, Gepotidacin",
                "Doxorubicin, Ampicillin, Amoxicillin",
                "Halicin, Abaucin, Trimethoprim, Sulfamethoxazole, Amikacin, Isoniazid"
            ],
            inputs=[input_line, output_species_single, extra_metric],
            cache_mode="eager",
        )
        download_single = gr.DownloadButton(
            label="Download predictions",
            visible=False,
        )
        with gr.Row():
            output_line = gr.DataFrame(
                label="Predictions",
                interactive=False,
                visible=False,
            )
            drawing = gr.Image(label="Chemical structures")
        gr.on(
            [
                input_line.submit,
            ],
            fn=predict_one,
            inputs=[
                input_line, 
                input_format_single,
                output_species_single,
                extra_metric,
            ],
            outputs={
                output_line,
            }
        ).then(
            draw_one,
            inputs=[
                input_line, 
                input_format_single,
            ],
            outputs=drawing,
        ).then(
            download_table,
            inputs=output_line,
            outputs=download_single
        )

    with gr.Tab("Convert a file"):
        input_file = gr.File(
            label="Upload a table of chemical compounds here",
            file_types=[".xlsx", ".csv", ".tsv", ".txt"],
        )
        with gr.Row():
            input_column = gr.Dropdown(
                label="Input column name",
                choices=[],
            )
            input_format = gr.Dropdown(
                label="Input string format",
                choices=list(_FROM_FUNCTIONS),
                value="smiles",
                interactive=True,
            )
        output_species = gr.CheckboxGroup(
            label="Species for prediction",
            choices=list(MODEL_REPOS),
            value=list(MODEL_REPOS)[:1],
            interactive=True,
        )
        go_button2 = gr.Button(
            value="Predict!",
        )

        download = gr.DownloadButton(
            label="Download converted data",
            visible=False,
        )
        input_data = gr.Dataframe(
            label="Input data",
            max_height=100,
            visible=False,
            interactive=False,
        )
        
        input_file.upload(
            load_input_data, 
            inputs=[input_file], 
            outputs=[input_data, input_column]
        )
        go_button2.click(
            convert_file,
            inputs=[
                input_data, 
                input_column,
                input_format,
                output_species,
            ],
            outputs={
                input_data,
            }
        ).then(
            download_table,
            inputs=input_data,
            outputs=download
        )

if __name__ == "__main__":
    demo.queue() 
    demo.launch(share=True)