Spaces:
Running
Running
File size: 15,336 Bytes
597542d 7835e78 597542d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
"""Gradio demo for schemist."""
from typing import Iterable, List, Optional, Union
from io import TextIOWrapper
import os
# os.environ["COMMANDLINE_ARGS"] = "--no-gradio-queue"
from carabiner import cast, print_err
from carabiner.pd import read_table
from duvida.autoclass import AutoModelBox
import gradio as gr
import nemony as nm
import numpy as np
import pandas as pd
from rdkit.Chem import Draw, Mol
from schemist.converting import (
_TO_FUNCTIONS,
_FROM_FUNCTIONS,
convert_string_representation,
_x2mol,
)
from schemist.tables import converter
import torch
HEADER_FILE = os.path.join("sources", "header.md")
MODEL_REPOS = {
"Klebsiella pneumoniae": "hf://scbirlab/spark-dv-fp-2503-kpn",
}
MODELBOXES = {
key: AutoModelBox.from_pretrained(val, cache_dir="./cache")
for key, val in MODEL_REPOS.items()
}
EXTRA_METRICS = {
"log10(variance)": lambda modelbox, candidates: modelbox.prediction_variance(candidates=candidates).map(lambda x: {modelbox._variance_key: torch.log10(x[modelbox._variance_key])}),
"Tanimoto nearest neighbor to training data": lambda modelbox, candidates: modelbox.tanimoto_nn(candidates=candidates),
"Doubtscore": lambda modelbox, candidates: modelbox.doubtscore(candidates=candidates).map(lambda x: {"doubtscore": torch.log10(x["doubtscore"])}),
"Information sensitivity (approx.)": lambda modelbox, candidates: modelbox.information_sensitivity(candidates=candidates, optimality_approximation=True, approximator="squared_jacobian").map(lambda x: {"information sensitivity": torch.log10(x["information sensitivity"])}),
}
def load_input_data(file: TextIOWrapper) -> pd.DataFrame:
df = read_table(file.name)
string_cols = list(df.select_dtypes(exclude=[np.number]))
df = gr.Dataframe(value=df, visible=True)
return df, gr.Dropdown(choices=string_cols, interactive=True)
def _clean_split_input(strings: str) -> List[str]:
return [s2.strip() for s in strings.split("\n") for s2 in s.split(",")]
def _convert_input(
strings: str,
input_representation: str = 'smiles',
output_representation: Union[Iterable[str], str] = 'smiles'
) -> List[str]:
strings = _clean_split_input(strings)
converted = convert_string_representation(
strings=strings,
input_representation=input_representation,
output_representation=output_representation,
)
return {key: list(map(str, cast(val, to=list))) for key, val in converted.items()}
def convert_one(
strings: str,
input_representation: str = 'smiles',
output_representation: Union[Iterable[str], str] = 'smiles'
):
df = pd.DataFrame({
input_representation: _clean_split_input(strings),
})
return convert_file(
df=df,
column=input_representation,
input_representation=input_representation,
output_representation=output_representation,
)
def predict_one(
strings: str,
input_representation: str = 'smiles',
predict: Union[Iterable[str], str] = 'smiles',
extra_metrics: Optional[Union[Iterable[str], str]] = None
):
if extra_metrics is None:
extra_metrics = []
else:
extra_metrics = cast(extra_metrics, to=list)
prediction_df = convert_one(
strings=strings,
input_representation=input_representation,
output_representation=['id', 'smiles', 'inchikey', "mwt", "clogp"],
)
species_to_predict = cast(predict, to=list)
prediction_cols = []
for species in species_to_predict:
message = f"Predicting for species: {species}"
print_err(message)
gr.Info(message, duration=3)
this_modelbox = MODELBOXES[species]
this_features = this_modelbox._input_cols
this_labels = this_modelbox._label_cols
this_prediction_input = (
prediction_df
.rename(columns={
"smiles": this_features[0],
})
.assign(**{label: np.nan for label in this_labels})
)
print(this_prediction_input)
prediction = this_modelbox.predict(
data=this_prediction_input,
features=this_features,
labels=this_labels,
aggregator="mean",
cache="./cache"
).with_format("numpy")["__prediction__"].flatten()
print(prediction)
this_col = f"{species}: predicted MIC (µM)"
prediction_df[this_col] = np.power(10., -prediction) * 1e6
prediction_cols.append(this_col)
for extra_metric in extra_metrics:
# this_modelbox._input_training_data = this_modelbox._input_training_data.remove_columns([this_modelbox._in_key])
this_col = f"{species}: {extra_metric}"
prediction_cols.append(this_col)
print(">>>", this_modelbox._input_training_data)
print(">>>", this_modelbox._input_training_data.format)
print(">>>", this_modelbox._in_key, this_modelbox._out_key)
this_extra = (
EXTRA_METRICS[extra_metric](
this_modelbox,
this_prediction_input,
)
.with_format("numpy")
)
prediction_df[this_col] = this_extra[this_extra.column_names[-1]]
return gr.DataFrame(
prediction_df[['id'] + prediction_cols + ['smiles', 'inchikey', "mwt", "clogp"]],
visible=True
)
def convert_file(
df: pd.DataFrame,
column: str = 'smiles',
input_representation: str = 'smiles',
output_representation: Union[str, Iterable[str]] = 'smiles'
):
message = f"Converting from {input_representation} to {output_representation}..."
print_err(message)
gr.Info(message, duration=3)
errors, df = converter(
df=df,
column=column,
input_representation=input_representation,
output_representation=output_representation,
)
df = df[
cast(output_representation, to=list) +
[col for col in df if col not in output_representation]
]
all_err = sum(err for key, err in errors.items())
message = (
f"Converted {df.shape[0]} molecules from "
f"{input_representation} to {output_representation} "
f"with {all_err} errors!"
)
print_err(message)
gr.Info(message, duration=5)
return df
def predict_file(
df: pd.DataFrame,
column: str = 'smiles',
input_representation: str = 'smiles',
extra_metrics: Optional[Union[Iterable[str], str]] = None
):
if extra_metrics is None:
extra_metrics = []
else:
extra_metrics = cast(extra_metrics, to=list)
prediction_df = convert_file(
df,
column=column,
input_representation=input_representation,
output_representation=["id", "smiles", "inchikey", "mwt", "clogp"],
)
species_to_predict = cast(predict, to=list)
prediction_cols = []
for species in species_to_predict:
this_modelbox = MODELBOXES[species]
this_features = this_modelbox._input_cols
this_labels = this_modelbox._label_cols
this_prediction_input = (
prediction_df
.rename(columns={
"smiles": this_features[0],
})
.assign(**{label: np.nan for label in this_labels})
)
prediction = this_modelbox.predict(
data=this_prediction_input,
features=this_features,
labels=this_labels,
cache="./cache"
).with_format("numpy")["__prediction__"].flatten()
print(prediction)
this_col = f"{species}: predicted MIC (µM)"
prediction_df[this_col] = np.power(10., -prediction) * 1e6
prediction_cols.append(this_col)
for extra_metric in extra_metrics:
# this_modelbox._input_training_data = this_modelbox._input_training_data.remove_columns([this_modelbox._in_key])
this_col = f"{species}: {extra_metric}"
prediction_cols.append(this_col)
print(">>>", this_modelbox._input_training_data)
this_extra = (
EXTRA_METRICS[extra_metric](
this_modelbox,
this_prediction_input,
)
.with_format("numpy")
)
prediction_df[this_col] = this_extra[this_extra.column_names[0]]
return prediction_df[['id'] + prediction_cols + ['smiles', 'inchikey', "mwt", "clogp"]]
def draw_one(
strings: Union[Iterable[str], str],
input_representation: str = 'smiles'
):
_ids = _convert_input(
strings,
input_representation,
["inchikey", "id", "pubchem_name"],
)
mols = cast(_x2mol(_clean_split_input(strings), input_representation), to=list)
if isinstance(mols, Mol):
mols = [mols]
return Draw.MolsToGridImage(
mols,
molsPerRow=min(3, len(mols)),
subImgSize=(450, 450),
legends=["\n".join(items) for items in zip(*_ids.values())],
)
def download_table(
df: pd.DataFrame
) -> str:
df_hash = nm.hash(pd.util.hash_pandas_object(df).values)
filename = f"converted-{df_hash}.csv"
df.to_csv(filename, index=False)
return gr.DownloadButton(value=filename, visible=True)
with gr.Blocks() as demo:
with open(HEADER_FILE, 'r') as f:
header_md = f.read()
gr.Markdown(header_md)
with gr.Tab(label="Paste one per line"):
input_format_single = gr.Dropdown(
label="Input string format",
choices=list(_FROM_FUNCTIONS),
value="smiles",
interactive=True,
)
input_line = gr.Textbox(
label="Input",
placeholder="Paste your molecule here, one per line",
lines=2,
interactive=True,
submit_btn=True,
)
output_species_single = gr.CheckboxGroup(
label="Species for prediction",
choices=list(MODEL_REPOS),
value=list(MODEL_REPOS)[:1],
interactive=True,
)
extra_metric = gr.CheckboxGroup(
label="Extra metrics (can increase calculation time!)",
choices=list(EXTRA_METRICS),
value=list(EXTRA_METRICS)[:2],
interactive=True,
)
examples = gr.Examples(
examples=[
[
'\n'.join([
"C1CC1N2C=C(C(=O)C3=CC(=C(C=C32)N4CCNCC4)F)C(=O)O",
"CN1C(=NC(=O)C(=O)N1)SCC2=C(N3[C@@H]([C@@H](C3=O)NC(=O)/C(=N\OC)/C4=CSC(=N4)N)SC2)C(=O)O",
"CC(=O)NC[C@H]1CN(C(=O)O1)C2=CC(=C(C=C2)N3CCOCC3)F",
"C1CC2=CC(=NC=C2OC1)CNC3CCN(CC3)C[C@@H]4CN5C(=O)C=CC6=C5N4C(=O)C=N6",
]),
list(MODEL_REPOS)[0],
list(EXTRA_METRICS)[:2],
], # cipro, ceftriaxone, linezolid, gepotidacin
[
'\n'.join([
"C[C@H]1[C@H]([C@H](C[C@@H](O1)O[C@H]2C[C@@](CC3=C2C(=C4C(=C3O)C(=O)C5=C(C4=O)C(=CC=C5)OC)O)(C(=O)CO)O)N)O",
"CC1([C@@H](N2[C@H](S1)[C@@H](C2=O)NC(=O)[C@@H](C3=CC=CC=C3)N)C(=O)O)C",
"CC1([C@@H](N2[C@H](S1)[C@@H](C2=O)NC(=O)[C@@H](C3=CC=C(C=C3)O)N)C(=O)O)C",
]),
list(MODEL_REPOS)[0],
list(EXTRA_METRICS)[:2],
], # doxorubicin, ampicillin, amoxicillin
[
'\n'.join([
"C1=C(SC(=N1)SC2=NN=C(S2)N)[N+](=O)[O-]",
"C1CN(CCC12C3=CC=CC=C3NC(=O)O2)CCC4=CC=C(C=C4)C(F)(F)F",
"COC1=CC(=CC(=C1OC)OC)CC2=CN=C(N=C2N)N",
"CC1=CC(=NO1)NS(=O)(=O)C2=CC=C(C=C2)N",
"C1[C@@H]([C@H]([C@@H]([C@H]([C@@H]1NC(=O)[C@H](CCN)O)O[C@@H]2[C@@H]([C@H]([C@@H]([C@H](O2)CO)O)N)O)O)O[C@@H]3[C@@H]([C@H]([C@@H]([C@H](O3)CN)O)O)O)N\nC1=CN=CC=C1C(=O)NN",
]),
list(MODEL_REPOS)[0],
list(EXTRA_METRICS)[:2],
], # Halicin, Abaucin, Trimethoprim, Sulfamethoxazole, Amikacin, Isoniazid
],
example_labels=[
"Ciprofloxacin, Ceftriaxone, Linezolid, Gepotidacin",
"Doxorubicin, Ampicillin, Amoxicillin",
"Halicin, Abaucin, Trimethoprim, Sulfamethoxazole, Amikacin, Isoniazid"
],
inputs=[input_line, output_species_single, extra_metric],
cache_mode="eager",
)
download_single = gr.DownloadButton(
label="Download predictions",
visible=False,
)
with gr.Row():
output_line = gr.DataFrame(
label="Predictions",
interactive=False,
visible=False,
)
drawing = gr.Image(label="Chemical structures")
gr.on(
[
input_line.submit,
],
fn=predict_one,
inputs=[
input_line,
input_format_single,
output_species_single,
extra_metric,
],
outputs={
output_line,
}
).then(
draw_one,
inputs=[
input_line,
input_format_single,
],
outputs=drawing,
).then(
download_table,
inputs=output_line,
outputs=download_single
)
with gr.Tab("Convert a file"):
input_file = gr.File(
label="Upload a table of chemical compounds here",
file_types=[".xlsx", ".csv", ".tsv", ".txt"],
)
with gr.Row():
input_column = gr.Dropdown(
label="Input column name",
choices=[],
)
input_format = gr.Dropdown(
label="Input string format",
choices=list(_FROM_FUNCTIONS),
value="smiles",
interactive=True,
)
output_species = gr.CheckboxGroup(
label="Species for prediction",
choices=list(MODEL_REPOS),
value=list(MODEL_REPOS)[:1],
interactive=True,
)
go_button2 = gr.Button(
value="Predict!",
)
download = gr.DownloadButton(
label="Download converted data",
visible=False,
)
input_data = gr.Dataframe(
label="Input data",
max_height=100,
visible=False,
interactive=False,
)
input_file.upload(
load_input_data,
inputs=[input_file],
outputs=[input_data, input_column]
)
go_button2.click(
convert_file,
inputs=[
input_data,
input_column,
input_format,
output_species,
],
outputs={
input_data,
}
).then(
download_table,
inputs=input_data,
outputs=download
)
if __name__ == "__main__":
demo.queue()
demo.launch(share=True)
|