Spaces:
Running
Running
File size: 27,424 Bytes
597542d 7dbc2af 597542d 7f2265f 597542d 7835e78 597542d 7f2265f 43cbc74 a11f59c 7f2265f 597542d 7f2265f 597542d 43cbc74 597542d 7f2265f 597542d 7f2265f 597542d 7dbc2af 7f2265f 43cbc74 7dbc2af 597542d a11f59c 597542d a11f59c 597542d a11f59c 597542d a11f59c 597542d 43cbc74 597542d a11f59c 597542d 7871646 a11f59c 7871646 597542d 7871646 597542d a11f59c 597542d a11f59c 597542d 43cbc74 597542d 7f2265f 597542d 7f2265f 597542d 7dbc2af a11f59c 597542d a11f59c 597542d 7f2265f 597542d a11f59c 597542d a11f59c 7dbc2af a11f59c 7dbc2af 7f2265f 7dbc2af a11f59c 7dbc2af a11f59c 7dbc2af a11f59c 7dbc2af a11f59c 597542d a11f59c 597542d a11f59c 597542d 7f2265f 597542d 7dbc2af 597542d 7f2265f 597542d a11f59c 597542d 7dbc2af 597542d 7f2265f 597542d 7dbc2af 597542d 7f2265f 597542d 7f2265f 597542d 7dbc2af 7f2265f 7dbc2af a11f59c 7f2265f a11f59c 7f2265f a11f59c 7dbc2af 7f2265f 7dbc2af a11f59c 7dbc2af 597542d 7f2265f 597542d 7871646 7dbc2af 597542d 7f2265f 597542d 7871646 7dbc2af 597542d 7dbc2af 597542d 7f2265f 53ffacc 43cbc74 53ffacc 7dbc2af 597542d 43cbc74 597542d a891563 597542d 7dbc2af a11f59c 7dbc2af a11f59c 7f2265f a11f59c 7dbc2af a11f59c 7dbc2af 7f2265f a11f59c 7f2265f a11f59c 7f2265f a11f59c 7f2265f a11f59c 7f2265f a11f59c 7dbc2af a11f59c 7dbc2af 7f2265f 7dbc2af a11f59c 597542d 43cbc74 a11f59c 43cbc74 597542d a11f59c 597542d a11f59c 53ffacc 597542d 7f2265f 53ffacc 597542d 7dbc2af a11f59c 7dbc2af a11f59c 7dbc2af 7f2265f 7dbc2af a11f59c 597542d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
"""Gradio demo for schemist."""
from typing import Iterable, List, Optional, Union
from functools import partial
from io import TextIOWrapper
import json
import os
# os.environ["COMMANDLINE_ARGS"] = "--no-gradio-queue"
from carabiner import cast, print_err
from carabiner.pd import read_table
from duvida.autoclass import AutoModelBox
import gradio as gr
import nemony as nm
import numpy as np
import pandas as pd
from rdkit.Chem import Draw, Mol
from schemist.converting import (
_FROM_FUNCTIONS,
convert_string_representation,
_x2mol,
)
from schemist.tables import converter
import torch
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
CACHE = "./cache"
MAX_ROWS = 4000
BATCH_SIZE=32
HEADER_FILE = os.path.join("sources", "header.md")
with open("repos.json", "r") as f:
MODEL_REPOS = json.load(f)
MODELBOXES = {
key: AutoModelBox.from_pretrained(val, cache_dir=CACHE)
for key, val in MODEL_REPOS.items()
}
[mb.to(DEVICE) for mb in MODELBOXES.values()]
EXTRA_METRICS = {
"log10(variance)": lambda modelbox, candidates: modelbox.prediction_variance(candidates=candidates, batch_size=BATCH_SIZE, cache=CACHE).map(lambda x: {modelbox._variance_key: torch.log10(x[modelbox._variance_key])}),
"Tanimoto nearest neighbor to training data": lambda modelbox, candidates: modelbox.tanimoto_nn(candidates=candidates, batch_size=BATCH_SIZE),
"Doubtscore": lambda modelbox, candidates: modelbox.doubtscore(candidates=candidates, cache=CACHE, batch_size=BATCH_SIZE).map(lambda x: {"doubtscore": torch.log10(x["doubtscore"])}),
"Information sensitivity (approx.)": lambda modelbox, candidates: modelbox.information_sensitivity(candidates=candidates, batch_size=BATCH_SIZE, optimality_approximation=True, approximator="squared_jacobian", cache=CACHE).map(lambda x: {"information sensitivity": torch.log10(x["information sensitivity"])}),
}
def get_dropdown_options(df, _type = str):
if _type == str:
cols = list(df.select_dtypes(exclude=[np.number]))
else:
cols = list(df.select_dtypes([np.number]))
return gr.Dropdown(choices=cols, interactive=True, value=cols[0], visible=True)
def load_input_data(file: Union[TextIOWrapper, str]) -> pd.DataFrame:
file = file if isinstance(file, str) else file.name
print_err(f"Loading {file}")
df = read_table(file)
print_err(df.head())
return gr.Dataframe(value=df, visible=True), get_dropdown_options(df, str)
def _clean_split_input(strings: str) -> List[str]:
return [s2.strip() for s in strings.split("\n") for s2 in s.split(",")]
def _convert_input(
strings: str,
input_representation: str = 'smiles',
output_representation: Union[Iterable[str], str] = 'smiles'
) -> List[str]:
strings = _clean_split_input(strings)
converted = convert_string_representation(
strings=strings,
input_representation=input_representation,
output_representation=output_representation,
)
return {key: list(map(str, cast(val, to=list))) for key, val in converted.items()}
def convert_one(
strings: str,
input_representation: str = 'smiles',
output_representation: Union[Iterable[str], str] = 'smiles'
):
output_representation = cast(output_representation, to=list)
for rep in output_representation:
message = f"Converting from {input_representation} to {rep}..."
gr.Info(message, duration=10)
df = pd.DataFrame({
input_representation: _clean_split_input(strings),
})
return convert_file(
df=df,
column=input_representation,
input_representation=input_representation,
output_representation=output_representation,
)
def _prediction_loop(
df: pd.DataFrame,
predict: Union[Iterable[str], str] = 'smiles',
extra_metrics: Optional[Union[Iterable[str], str]] = None
) -> pd.DataFrame:
species_to_predict = cast(predict, to=list)
prediction_cols = []
if extra_metrics is None:
extra_metrics = []
else:
extra_metrics = cast(extra_metrics, to=list)
for species in species_to_predict:
message = f"Predicting for species: {species}"
print_err(message)
gr.Info(message, duration=3)
this_modelbox = MODELBOXES[species]
this_features = this_modelbox._input_cols
this_labels = this_modelbox._label_cols
this_prediction_input = (
df
.rename(columns={
"smiles": this_features[0],
})
.assign(**{label: np.nan for label in this_labels})
)
print(this_prediction_input)
prediction = this_modelbox.predict(
data=this_prediction_input,
features=this_features,
labels=this_labels,
aggregator="mean",
cache=CACHE,
).with_format("numpy")["__prediction__"].flatten()
print(prediction)
this_col = f"{species}: predicted MIC (µM)"
df[this_col] = np.power(10., -prediction) * 1e6
prediction_cols.append(this_col)
this_col = f"{species}: predicted MIC (µg / mL)"
df[this_col] = np.power(10., -prediction) * 1e3 * df["mwt"]
prediction_cols.append(this_col)
for extra_metric in extra_metrics:
message = f"Calculating {extra_metric} for species: {species}"
print_err(message)
gr.Info(message, duration=10)
# this_modelbox._input_training_data = this_modelbox._input_training_data.remove_columns([this_modelbox._in_key])
this_col = f"{species}: {extra_metric}"
prediction_cols.append(this_col)
print(">>>", this_modelbox._input_training_data)
print(">>>", this_modelbox._input_training_data.format)
print(">>>", this_modelbox._in_key, this_modelbox._out_key)
this_extra = (
EXTRA_METRICS[extra_metric](
this_modelbox,
this_prediction_input,
)
.with_format("numpy")
)
df[this_col] = this_extra[this_extra.column_names[-1]]
return prediction_cols, df
def predict_one(
strings: str,
input_representation: str = 'smiles',
predict: Union[Iterable[str], str] = 'smiles',
extra_metrics: Optional[Union[Iterable[str], str]] = None
):
prediction_df = convert_one(
strings=strings,
input_representation=input_representation,
output_representation=['id', 'pubchem_name', 'pubchem_id', 'smiles', 'inchikey', "mwt", "clogp"],
)
prediction_cols, prediction_df = _prediction_loop(
prediction_df,
predict=predict,
extra_metrics=extra_metrics,
)
return gr.DataFrame(
prediction_df[
['id', 'pubchem_name', 'pubchem_id']
+ prediction_cols
+ ['smiles', 'inchikey', "mwt", "clogp"]
],
visible=True
)
def convert_file(
df: pd.DataFrame,
column: str = 'smiles',
input_representation: str = 'smiles',
output_representation: Union[str, Iterable[str]] = 'smiles'
):
output_representation = cast(output_representation, to=list)
for rep in output_representation:
message = f"Converting from {input_representation} to {rep}..."
gr.Info(message, duration=10)
print_err(df.head())
print_err(message)
gr.Info(message, duration=3)
errors, df = converter(
df=df,
column=column,
input_representation=input_representation,
output_representation=output_representation,
)
df = df[
cast(output_representation, to=list) +
[col for col in df if col not in output_representation]
]
all_err = sum(err for key, err in errors.items())
message = (
f"Converted {df.shape[0]} molecules from "
f"{input_representation} to {output_representation} "
f"with {all_err} errors!"
)
print_err(message)
gr.Info(message, duration=5)
return df
def predict_file(
df: pd.DataFrame,
column: str = 'smiles',
input_representation: str = 'smiles',
predict: str = 'smiles',
predict2: Optional[str] = None,
extra_metrics: Optional[Union[Iterable[str], str]] = None
):
predict = cast(predict, to=list)
if predict2 is not None:
predict += cast(predict2, to=list)
if extra_metrics is None:
extra_metrics = []
else:
extra_metrics = cast(extra_metrics, to=list)
if df.shape[0] > MAX_ROWS:
message = f"Truncating input to {MAX_ROWS} rows"
print_err(message)
gr.Info(message, duration=15)
df = df.iloc[:MAX_ROWS]
prediction_df = convert_file(
df,
column=column,
input_representation=input_representation,
output_representation=["id", "smiles", "inchikey", "mwt", "clogp"],
)
prediction_cols, prediction_df = _prediction_loop(
prediction_df,
predict=predict,
extra_metrics=extra_metrics,
)
main_cols = set(
['id', 'inchikey', 'smiles', "mwt", "clogp"]
+ [column]
+ prediction_cols
)
other_cols = [
col for col in prediction_df
if col not in main_cols
]
return prediction_df[
['id', 'inchikey']
+ [column]
+ prediction_cols + other_cols
+ ['smiles', "mwt", "clogp"]
]
def draw_one(
strings: Union[Iterable[str], str],
input_representation: str = 'smiles'
):
message = f"Drawing {len(cast(strings, to=list))} molecules..."
gr.Info(message, duration=10)
_ids = _convert_input(
strings,
input_representation,
["inchikey", "id", "pubchem_name"],
)
mols = cast(_x2mol(_clean_split_input(strings), input_representation), to=list)
if isinstance(mols, Mol):
mols = [mols]
return Draw.MolsToGridImage(
mols,
molsPerRow=min(3, len(mols)),
subImgSize=(450, 450),
legends=["\n".join(items) for items in zip(*_ids.values())],
)
def log10_if_all_positive(df, col):
if np.all(df[col] > 0.):
df[col] = np.log10(df[col])
title = f"log10[ {col} ]"
else:
title = col
return title, df
def plot_x_vs_y(
df,
x: str,
y: str,
color: Optional[str] = None,
):
message = f"Plotting x={x}, y={y}, color={color}..."
gr.Info(message, duration=10)
print_err(df.head())
y_title = y
cols = ["id", "inchikey", "smiles", "mwt", "clogp", x, y]
if color is not None and color not in cols:
cols.append(color)
cols = list(set(cols))
x_title, df = log10_if_all_positive(df, x)
y_title, df = log10_if_all_positive(df, y)
color_title, df = log10_if_all_positive(df, color)
return gr.ScatterPlot(
value=df[cols],
x=x,
y=y,
color=color,
x_title=x_title,
y_title=y_title,
color_title=color_title,
tooltip="all",
visible=True,
)
def plot_pred_vs_observed(
df,
species: str,
observed: str,
color: Optional[str] = None,
):
print_err(df.head())
xcol = f"{species}: predicted MIC (µM)"
ycol = observed
return plot_x_vs_y(
df,
x=xcol,
y=ycol,
color=color,
)
def download_table(
df: pd.DataFrame
) -> str:
df_hash = nm.hash(pd.util.hash_pandas_object(df).values)
filename = f"predicted-{df_hash}.csv"
df.to_csv(filename, index=False)
return gr.DownloadButton(value=filename, visible=True)
with gr.Blocks() as demo:
with open(HEADER_FILE, 'r') as f:
header_md = f.read()
gr.Markdown(header_md)
with gr.Tab(label="Paste one per line"):
input_format_single = gr.Dropdown(
label="Input string format",
choices=list(_FROM_FUNCTIONS),
value="smiles",
interactive=True,
)
input_line = gr.Textbox(
label="Input",
placeholder="Paste your molecule here, one per line",
lines=2,
interactive=True,
submit_btn=True,
)
output_species_single = gr.CheckboxGroup(
label="Species for prediction",
choices=list(MODEL_REPOS),
value=list(MODEL_REPOS)[:1],
interactive=True,
)
extra_metric = gr.CheckboxGroup(
label="Extra metrics (Doubscore & Information Sensitivity can increase calculation time to a couple of minutes!)",
choices=list(EXTRA_METRICS),
value=list(EXTRA_METRICS)[:2],
interactive=True,
)
examples = gr.Examples(
examples=[
[
'\n'.join([
"C1CC1N2C=C(C(=O)C3=CC(=C(C=C32)N4CCNCC4)F)C(=O)O",
"CN1C(=NC(=O)C(=O)N1)SCC2=C(N3[C@@H]([C@@H](C3=O)NC(=O)/C(=N\OC)/C4=CSC(=N4)N)SC2)C(=O)O",
"CC(C)(C(=O)O)O/N=C(/C1=CSC(=N1)N)\C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C[N+]4(CCCC4)CCNC(=O)C5=C(C(=C(C=C5)O)O)Cl)C(=O)[O-]",
"CC(=O)NC[C@H]1CN(C(=O)O1)C2=CC(=C(C=C2)N3CCOCC3)F",
"C1CC2=CC(=NC=C2OC1)CNC3CCN(CC3)C[C@@H]4CN5C(=O)C=CC6=C5N4C(=O)C=N6",
]),
"Yersinia pestis",
list(EXTRA_METRICS)[:2],
], # cipro, ceftriaxone, cefiderocol, linezolid, gepotidacin
[
'\n'.join([
"C[C@H]1[C@H]([C@H](C[C@@H](O1)O[C@H]2C[C@@](CC3=C2C(=C4C(=C3O)C(=O)C5=C(C4=O)C(=CC=C5)OC)O)(C(=O)CO)O)N)O",
"CC1([C@@H](N2[C@H](S1)[C@@H](C2=O)NC(=O)[C@@H](C3=CC=CC=C3)N)C(=O)O)C",
"CC1([C@@H](N2[C@H](S1)[C@@H](C2=O)NC(=O)[C@@H](C3=CC=C(C=C3)O)N)C(=O)O)C",
"C[C@@H]1[C@@H]2[C@H](C(=O)N2C(=C1S[C@H]3C[C@H](NC3)C(=O)N(C)C)C(=O)O)[C@@H](C)O",
"C[C@@]1([C@H]2C[C@H]3[C@@H](C(=O)C(=C([C@]3(C(=O)C2=C(C4=C1C=CC=C4O)O)O)O)C(=O)N)N(C)C)O",
"CC1=C2C=CC=C(C2=C(C3=C1C[C@H]4[C@@H](C(=O)C(=C([C@]4(C3=O)O)O)C(=O)N)N(C)C)O)O",
]),
"Staphylococcus aureus",
list(EXTRA_METRICS)[:2],
], # doxorubicin, ampicillin, amoxicillin, meropenem, tetracycline, anhydrotetracycline
[
'\n'.join([
"C1=C(SC(=N1)SC2=NN=C(S2)N)[N+](=O)[O-]",
"C1CN(CCC12C3=CC=CC=C3NC(=O)O2)CCC4=CC=C(C=C4)C(F)(F)F",
"COC1=CC(=CC(=C1OC)OC)CC2=CN=C(N=C2N)N",
"CC1=CC(=NO1)NS(=O)(=O)C2=CC=C(C=C2)N",
"C1[C@@H]([C@H]([C@@H]([C@H]([C@@H]1NC(=O)[C@H](CCN)O)O[C@@H]2[C@@H]([C@H]([C@@H]([C@H](O2)CO)O)N)O)O)O[C@@H]3[C@@H]([C@H]([C@@H]([C@H](O3)CN)O)O)O)N",
"C1=CN=CC=C1C(=O)NN",
]),
["Escherichia coli", "Acinetobacter baumannii"],
list(EXTRA_METRICS)[:2],
], # Halicin, Abaucin, Trimethoprim, Sulfamethoxazole, Amikacin, Isoniazid
[
'\n'.join([
"CC[C@H](C)[C@H]1C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N2CCC[C@@H]2C(=O)N3CCC[C@H]3C(=O)N[C@H](C(=O)N[C@H](C(=O)N1)CC4=CNC5=CC=CC=C54)[C@@H](C)O)CO)C)CCN)CCN)CC6=CNC7=CC=CC=C76)CCN)CCN)CCCN)CCN",
"C[C@H]1[C@H]([C@@](C[C@@H](O1)O[C@@H]2[C@H]([C@@H]([C@H](O[C@H]2OC3=C4C=C5C=C3OC6=C(C=C(C=C6)[C@H]([C@H](C(=O)N[C@H](C(=O)N[C@H]5C(=O)N[C@@H]7C8=CC(=C(C=C8)O)C9=C(C=C(C=C9O)O)[C@H](NC(=O)[C@H]([C@@H](C1=CC(=C(O4)C=C1)Cl)O)NC7=O)C(=O)O)CC(=O)N)NC(=O)[C@@H](CC(C)C)NC)O)Cl)CO)O)O)(C)N)O",
"CN1[C@H](C(=O)NCC2=C(C=CC=C2SC3=C(CN[C@H](C(=O)N[C@H](C1=O)CCCCN)CCCN)C=CC=N3)C4=CC=C(C=C4)C(=O)O)CC5=CNC6=CC=CC=C65",
"C[C@@]1(CO[C@@H]([C@@H]([C@H]1NC)O)O[C@H]2[C@@H](C[C@@H]([C@H]([C@@H]2O)O[C@@H]3[C@@H](CC=C(O3)CNCCO)N)N)NC(=O)[C@H](CCN)O)O",
"CC(C1CCC(C(O1)OC2C(CC(C(C2O)OC3C(C(C(CO3)(C)O)NC)O)N)N)N)NC",
"C[C@H]1/C=C/C=C(\C(=O)NC2=C(C(=C3C(=C2O)C(=C(C4=C3C(=O)[C@](O4)(O/C=C/[C@@H]([C@H]([C@H]([C@@H]([C@@H]([C@@H]([C@H]1O)C)O)C)OC(=O)C)C)OC)C)C)O)O)/C=N/N5CCN(CC5)C)/C",
]),
"Acinetobacter baumannii",
list(EXTRA_METRICS)[:2],
], # murepavadin, vancomycin, zosurabalpin, plazomicin, Gentamicin, rifampicin
[
'\n'.join([
"CC1=C(OC2=CC=CC=C12)CN(C)C(=O)/C=C/C3=CC4=C(NC(=O)CC4)N=C3",
"CC1=C(OC2=CC=CC=C12)CN(C)C(=O)/C=C/C3=CC4=C(NC(=O)[C@@H](C4)N)N=C3",
"CC1=C(OC2=CC=CC=C12)CN(C)C(=O)/C=C/C3=CC4=C(NC(=O)[C@H](CC4)[NH3+])N=C3.[Cl-]",
"C1=C(C(=O)NC(=O)N1)F",
"CCCCCCNC(=O)N1C=C(C(=O)NC1=O)F",
"C[C@@H]1OC[C@@H]2[C@@H](O1)[C@@H]([C@H]([C@@H](O2)O[C@H]3[C@H]4COC(=O)[C@@H]4[C@@H](C5=CC6=C(C=C35)OCO6)C7=CC(=C(C(=C7)OC)O)OC)O)O",
]),
"Escherichia coli",
list(EXTRA_METRICS)[:2],
], # Debio1452, Debio-1452-NH3, Fabimycin, 5-FU, Carmofur, Etoposide
[
'\n'.join([
"COC1=CC(=CC(=C1OC)OC)CC2=CN=C(N=C2N)N",
"CC(C)C1=CC=C(C=C1)CN2C=CC3=C2C=CC4=C3C(=NC(=N4)NC5CC5)N",
"C1=CC(=CC=C1CCC2=CNC3=C2C(=O)NC(=N3)N)C(=O)N[C@@H](CCC(=O)O)C(=O)O",
"CC1=C(C2=C(C=C1)N=C(NC2=O)N)SC3=CC=NC=C3",
"CN(CC1=CN=C2C(=N1)C(=NC(=N2)N)N)C3=CC=C(C=C3)C(=O)N[C@@H](CCC(=O)O)C(=O)O",
"CC1=NC2=C(C=C(C=C2)CN(C)C3=CC=C(S3)C(=O)N[C@@H](CCC(=O)O)C(=O)O)C(=O)N1",
]),
"Klebsiella pneumoniae",
list(EXTRA_METRICS)[:2],
], # Trimethoprim, SCH79797, Pemetrexed, Nolatrexed, Methotrexate, Raltitrexed
[
'\n'.join([
"C[C@H]([C@@H](C(=O)NO)NC(=O)C1=CC=C(C=C1)C#CC2=CC=C(C=C2)CN3CCOCC3)O",
"CC(C)C1=CC=C(C=C1)CN2C=CC3=C2C=CC4=C3C(=NC(=N4)NC5CC5)N",
"C1=CC=C(C=C1)CNC2=NC(=NC3=CC=CC=C32)NCC4=CC=CC=C4",
"CC(C)(C)C1=CC=C(C=C1)C(=O)NC(=S)NC2=CC=C(C=C2)NC(=O)CCCCN(C)C",
"CCC1=C(C(=NC(=N1)N)N)C2=CC=C(C=C2)Cl",
"C1=CC(=CC=C1C(=O)N[C@@H](CCC(=O)O)C(=O)O)NCC2=CN=C3C(=N2)C(=NC(=N3)N)N",
]),
"Klebsiella pneumoniae",
list(EXTRA_METRICS)[:2],
], # CHIR-090, SCH79797, DBeQ, Tenovin-6, Pyrimethamine, Aminopterin
],
example_labels=[
"_Y. pestis_ (plague) vs Ciprofloxacin, Ceftriaxone, Cefiderocol, Linezolid, Gepotidacin",
"_S. aureus_ vs Doxorubicin, Ampicillin, Amoxicillin, Meropenem, Tetracycline, Anhydrotetracycline",
"_E. coli_ and _A. baumannii_ vs Halicin, Abaucin, Trimethoprim, Sulfamethoxazole, Amikacin, Isoniazid",
"_A. baumannii_ vs Murepavadin, Vancomycin, Zosurabalpin, Plazomicin, Gentamicin, Rifampicin",
"_E. coli_ vs Debio-1452, Debio-1452-NH3, Fabimycin, 5-FU, Carmofur, Etoposide",
"_K. pneumoniae_ vs Trimethoprim, Pemetrexed, Nolatrexed, Methotrexate, Raltitrexed",
"_K. pneumoniae_ vs CHIR-090, SCH79797, DBeQ, Tenovin-6, Pyrimethamine, Aminopterin"
],
inputs=[input_line, output_species_single, extra_metric],
cache_mode="eager",
)
download_single = gr.DownloadButton(
label="Download predictions",
visible=False,
)
# with gr.Row():
output_line = gr.DataFrame(
label="Predictions",
interactive=False,
visible=False,
)
drawing = gr.Image(label="Chemical structures")
gr.on(
[
input_line.submit,
],
fn=predict_one,
inputs=[
input_line,
input_format_single,
output_species_single,
extra_metric,
],
outputs={
output_line,
}
).then(
draw_one,
inputs=[
input_line,
input_format_single,
],
outputs=drawing,
).then(
download_table,
inputs=output_line,
outputs=download_single
)
with gr.Tab(f"Predict on structures from a file (max. {MAX_ROWS} rows, ≤ 2 species)"):
input_file = gr.File(
label="Upload a table of chemical compounds here",
file_types=[".xlsx", ".csv", ".tsv", ".txt"],
)
with gr.Row():
input_column = gr.Dropdown(
label="Input column name",
choices=[],
allow_custom_value=True,
visible=False,
)
input_format = gr.Dropdown(
label="Input string format",
choices=list(_FROM_FUNCTIONS),
value="smiles",
interactive=True,
visible=True,
)
output_species = [
gr.Dropdown(
label="Species 1 for prediction",
choices=list(MODEL_REPOS),
value=list(MODEL_REPOS)[0],
interactive=True,
),
gr.Dropdown(
label="Species 2 for prediction",
choices=list(MODEL_REPOS),
value=None,
interactive=True,
),
]
extra_metric_file = gr.CheckboxGroup(
label="Extra metrics (Information Sensitivity can increase calculation time)",
choices=list(EXTRA_METRICS),
value=list(EXTRA_METRICS)[:2],
interactive=True,
)
go_button2 = gr.Button(
value="Predict!",
)
download = gr.DownloadButton(
label="Download predictions",
visible=False,
)
input_data = gr.Dataframe(
label="Input data",
max_height=500,
visible=False,
interactive=False,
)
with gr.Row():
observed_col = gr.Dropdown(
label="Observed column (y-axis) for left plot",
choices=[],
value=None,
interactive=True,
visible=False,
)
color_col = gr.Dropdown(
label="Color for left plot",
choices=[],
value=None,
interactive=True,
visible=False,
)
with gr.Row():
any_x_col = gr.Dropdown(
label="x-axis for right plot",
choices=[],
value=None,
interactive=True,
visible=False,
)
any_y_col = gr.Dropdown(
label="y-axis for right plot",
choices=[],
value=None,
interactive=True,
visible=False,
)
any_color_col = gr.Dropdown(
label="Color for right plot",
choices=[],
value=None,
interactive=True,
visible=False,
)
plot_button = gr.Button(
value="Plot!",
visible=False,
)
file_examples = gr.Examples(
examples=[
[
"example-data/stokes2020-eco.csv",
"SMILES",
"Escherichia coli",
"Mean_Growth",
"Escherichia coli: Doubtscore",
list(EXTRA_METRICS)[:3],
],
[
"example-data/liu23-abau.csv",
"SMILES",
"Acinetobacter baumannii",
"Mean",
"Acinetobacter baumannii: Doubtscore",
list(EXTRA_METRICS)[:3],
],
[
"example-data/wong24-sau-tox-5000.csv",
"SMILES",
"Staphylococcus aureus",
"Mean",
"Staphylococcus aureus: Doubtscore",
list(EXTRA_METRICS)[:3],
],
],
example_labels=[
"E. coli training data from Stokes J. et al., Cell, 2020",
"A. baumannii training data from Liu, 2023",
"S. aureus and toxicity training data from Wong, 2024",
],
inputs=[input_file, input_column, output_species[0], observed_col, color_col, extra_metric_file],
cache_mode="eager",
)
with gr.Row():
pred_vs_observed = gr.ScatterPlot(
label="Prediction vs observed",
x_title="Predicted MIC (µM)",
y_title="Observed",
visible=False,
height=600,
)
plot_any_vs_any = gr.ScatterPlot(
label="Any vs any",
visible=False,
height=600,
)
load_data_action = {
"fn": load_input_data,
"inputs": [input_file],
"outputs": [input_data, input_column]
}
file_examples.load_input_event.then(
**load_data_action,
)
input_file.upload(
**load_data_action,
)
go2_click_event = go_button2.click(
predict_file,
inputs=[
input_data,
input_column,
input_format,
*output_species,
extra_metric_file,
],
outputs={
input_data,
}
).then(
download_table,
inputs=input_data,
outputs=download
).then(
lambda: gr.Button(visible=True),
outputs=[plot_button]
)
for dropdown in [observed_col, color_col, any_color_col, any_x_col, any_y_col]:
go2_click_event.then(
partial(get_dropdown_options, _type="number"),
inputs=[input_data],
outputs=[dropdown],
)
plot_button.click(
plot_pred_vs_observed,
inputs=[
input_data,
output_species[0],
observed_col,
color_col,
],
outputs=[pred_vs_observed],
).then(
plot_x_vs_y,
inputs=[
input_data,
any_x_col,
any_y_col,
any_color_col,
],
outputs=[plot_any_vs_any],
)
if __name__ == "__main__":
demo.queue()
demo.launch(share=True)
|