Spaces:
Running
Running
Eachan Johnson
commited on
Commit
·
0747c7e
1
Parent(s):
69a6087
Wrap column headers
Browse files- app.py +6 -7
- sources/header.md +1 -1
app.py
CHANGED
@@ -163,10 +163,10 @@ def _prediction_loop(
|
|
163 |
cache=CACHE,
|
164 |
).with_format("numpy")["__prediction__"].flatten()
|
165 |
print(prediction)
|
166 |
-
this_col = f"{species}
|
167 |
df[this_col] = np.power(10., -prediction) * 1e6
|
168 |
prediction_cols.append(this_col)
|
169 |
-
this_col = f"{species}
|
170 |
df[this_col] = np.power(10., -prediction) * 1e3 * df["mwt"]
|
171 |
prediction_cols.append(this_col)
|
172 |
|
@@ -175,7 +175,7 @@ def _prediction_loop(
|
|
175 |
print_err(message)
|
176 |
gr.Info(message, duration=10)
|
177 |
# this_modelbox._input_training_data = this_modelbox._input_training_data.remove_columns([this_modelbox._in_key])
|
178 |
-
this_col = f"{species}
|
179 |
prediction_cols.append(this_col)
|
180 |
print(">>>", this_modelbox._input_training_data)
|
181 |
print(">>>", this_modelbox._input_training_data.format)
|
@@ -221,7 +221,7 @@ def predict_one(
|
|
221 |
"pinned_columns": 3,
|
222 |
"visible": True,
|
223 |
"wrap": True,
|
224 |
-
"column_widths": [
|
225 |
}
|
226 |
if return_pd:
|
227 |
return df, gr.DataFrame(**gradio_opts)
|
@@ -320,7 +320,7 @@ def predict_file(
|
|
320 |
"pinned_columns": 3,
|
321 |
"visible": True,
|
322 |
"wrap": True,
|
323 |
-
"column_widths": [
|
324 |
}
|
325 |
|
326 |
if return_pd:
|
@@ -497,7 +497,7 @@ def _initial_setup():
|
|
497 |
interactive=True,
|
498 |
),
|
499 |
"extras": gr.CheckboxGroup(
|
500 |
-
label="Extra metrics (
|
501 |
choices=list(EXTRA_METRICS),
|
502 |
value=list(EXTRA_METRICS)[:2],
|
503 |
interactive=True,
|
@@ -513,7 +513,6 @@ def _initial_setup():
|
|
513 |
output_line = gr.DataFrame(
|
514 |
label="Predictions (scroll left and right)",
|
515 |
interactive=False,
|
516 |
-
pinned_columns=3,
|
517 |
visible=True,
|
518 |
)
|
519 |
download_single = gr.DownloadButton(
|
|
|
163 |
cache=CACHE,
|
164 |
).with_format("numpy")["__prediction__"].flatten()
|
165 |
print(prediction)
|
166 |
+
this_col = f"{species}: predicted MIC (µM)"
|
167 |
df[this_col] = np.power(10., -prediction) * 1e6
|
168 |
prediction_cols.append(this_col)
|
169 |
+
this_col = f"{species}: predicted MIC (µg / mL)"
|
170 |
df[this_col] = np.power(10., -prediction) * 1e3 * df["mwt"]
|
171 |
prediction_cols.append(this_col)
|
172 |
|
|
|
175 |
print_err(message)
|
176 |
gr.Info(message, duration=10)
|
177 |
# this_modelbox._input_training_data = this_modelbox._input_training_data.remove_columns([this_modelbox._in_key])
|
178 |
+
this_col = f"{species}: {extra_metric}"
|
179 |
prediction_cols.append(this_col)
|
180 |
print(">>>", this_modelbox._input_training_data)
|
181 |
print(">>>", this_modelbox._input_training_data.format)
|
|
|
221 |
"pinned_columns": 3,
|
222 |
"visible": True,
|
223 |
"wrap": True,
|
224 |
+
"column_widths": [120] * 3 + [250] * (prediction_df.shape[1] - 3),
|
225 |
}
|
226 |
if return_pd:
|
227 |
return df, gr.DataFrame(**gradio_opts)
|
|
|
320 |
"pinned_columns": 3,
|
321 |
"visible": True,
|
322 |
"wrap": True,
|
323 |
+
"column_widths": [120] * 3 + [250] * (prediction_df.shape[1] - 3),
|
324 |
}
|
325 |
|
326 |
if return_pd:
|
|
|
497 |
interactive=True,
|
498 |
),
|
499 |
"extras": gr.CheckboxGroup(
|
500 |
+
label="Extra metrics (Doubtscore & Information Sensitivity can increase calculation time to a couple of minutes!)",
|
501 |
choices=list(EXTRA_METRICS),
|
502 |
value=list(EXTRA_METRICS)[:2],
|
503 |
interactive=True,
|
|
|
513 |
output_line = gr.DataFrame(
|
514 |
label="Predictions (scroll left and right)",
|
515 |
interactive=False,
|
|
|
516 |
visible=True,
|
517 |
)
|
518 |
download_single = gr.DownloadButton(
|
sources/header.md
CHANGED
@@ -4,7 +4,7 @@ Predictions are from an AI model trained on the wild-type accumulator subset of
|
|
4 |
dataset](https://doi.org/10.1021/acsinfecdis.8b00193), available to browse
|
5 |
[here](https://huggingface.co/datasets/scbirlab/thomas-2018-spark-wt).
|
6 |
|
7 |
-
Predictions are given in micromolar (µM) and µg/mL. You can optionally have uncertainty scores calculated.
|
8 |
|
9 |
This model was generated using [our Duvida framework](https://github.com/scbirlab/duvida), as a result of
|
10 |
hyperparameter searches and selecting the model that performs best on unseen test data (from a scaffold split).
|
|
|
4 |
dataset](https://doi.org/10.1021/acsinfecdis.8b00193), available to browse
|
5 |
[here](https://huggingface.co/datasets/scbirlab/thomas-2018-spark-wt).
|
6 |
|
7 |
+
Predictions are given in micromolar (µM) and µg/mL. You can optionally have uncertainty scores calculated. These can take a few minutes, so please be patient.
|
8 |
|
9 |
This model was generated using [our Duvida framework](https://github.com/scbirlab/duvida), as a result of
|
10 |
hyperparameter searches and selecting the model that performs best on unseen test data (from a scaffold split).
|