Eachan Johnson commited on
Commit
2bfd9e8
·
1 Parent(s): 7908b96

Fix duplicated smiles issue

Browse files
Files changed (1) hide show
  1. app.py +6 -12
app.py CHANGED
@@ -2,7 +2,6 @@
2
 
3
  from typing import Iterable, List, Optional, Union
4
  import csv
5
- from functools import partial
6
  from io import TextIOWrapper
7
  import itertools
8
  import json
@@ -234,12 +233,10 @@ def convert_file(
234
  output_representation: Union[str, Iterable[str]] = 'smiles'
235
  ):
236
  output_representation = cast(output_representation, to=list)
237
- for rep in output_representation:
238
- message = f"Converting from {input_representation} to {rep}..."
239
- gr.Info(message, duration=10)
240
- print_err(df.head())
241
  print_err(message)
242
- gr.Info(message, duration=3)
243
  errors, df = converter(
244
  df=df,
245
  column=column,
@@ -247,7 +244,7 @@ def convert_file(
247
  output_representation=output_representation,
248
  )
249
  df = df[
250
- cast(output_representation, to=list) +
251
  [col for col in df if col not in output_representation]
252
  ]
253
  all_err = sum(err for key, err in errors.items())
@@ -300,15 +297,12 @@ def predict_file(
300
  + [column]
301
  + prediction_cols
302
  )
303
- other_cols = [
304
- col for col in prediction_df
305
- if col not in main_cols
306
- ]
307
  prediction_df = prediction_df[
308
  ['id', 'inchikey']
309
  + [column]
310
  + prediction_cols + other_cols
311
- + ['smiles', "mwt", "clogp"]
312
  ]
313
  plot_dropdown = get_dropdown_options(prediction_df, _type="number")
314
  plot_dropdown = (plot_dropdown,) * 5
 
2
 
3
  from typing import Iterable, List, Optional, Union
4
  import csv
 
5
  from io import TextIOWrapper
6
  import itertools
7
  import json
 
233
  output_representation: Union[str, Iterable[str]] = 'smiles'
234
  ):
235
  output_representation = cast(output_representation, to=list)
236
+ message = f"Converting from {input_representation} to {"".join(output_representation)}..."
237
+ gr.Info(message, duration=5)
 
 
238
  print_err(message)
239
+ print_err(df.head())
240
  errors, df = converter(
241
  df=df,
242
  column=column,
 
244
  output_representation=output_representation,
245
  )
246
  df = df[
247
+ output_representation +
248
  [col for col in df if col not in output_representation]
249
  ]
250
  all_err = sum(err for key, err in errors.items())
 
297
  + [column]
298
  + prediction_cols
299
  )
300
+ other_cols = list(set(prediction_df) - main_cols)
 
 
 
301
  prediction_df = prediction_df[
302
  ['id', 'inchikey']
303
  + [column]
304
  + prediction_cols + other_cols
305
+ + ["mwt", "clogp"]
306
  ]
307
  plot_dropdown = get_dropdown_options(prediction_df, _type="number")
308
  plot_dropdown = (plot_dropdown,) * 5