File size: 18,168 Bytes
097bf68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import math
from collections import OrderedDict
from functools import partial

import torch
from einops import rearrange, repeat
from scepter.modules.model.base_model import BaseModel
from scepter.modules.model.registry import BACKBONES
from scepter.modules.utils.config import dict_to_yaml
from scepter.modules.utils.distribute import we
from scepter.modules.utils.file_system import FS
from torch import Tensor, nn
from torch.utils.checkpoint import checkpoint_sequential

from .layers import (DoubleStreamBlock, EmbedND, LastLayer,
                                 MLPEmbedder, SingleStreamBlock,
                                 timestep_embedding)

@BACKBONES.register_class()
class Flux(BaseModel):
    """
    Transformer backbone Diffusion model with RoPE.
    """
    para_dict = {
        "IN_CHANNELS": {
            "value": 64,
            "description": "model's input channels."
        },
        "OUT_CHANNELS": {
            "value": 64,
            "description": "model's output channels."
        },
        "HIDDEN_SIZE": {
            "value": 1024,
            "description": "model's hidden size."
        },
        "NUM_HEADS": {
            "value": 16,
            "description": "number of heads in the transformer."
        },
        "AXES_DIM": {
            "value": [16, 56, 56],
            "description": "dimensions of the axes of the positional encoding."
        },
        "THETA": {
            "value": 10_000,
            "description": "theta for positional encoding."
        },
        "VEC_IN_DIM": {
            "value": 768,
            "description": "dimension of the vector input."
        },
        "GUIDANCE_EMBED": {
            "value": False,
            "description": "whether to use guidance embedding."
        },
        "CONTEXT_IN_DIM": {
            "value": 4096,
            "description": "dimension of the context input."
        },
        "MLP_RATIO": {
            "value": 4.0,
            "description": "ratio of mlp hidden size to hidden size."
        },
        "QKV_BIAS": {
            "value": True,
            "description": "whether to use bias in qkv projection."
        },
        "DEPTH": {
            "value": 19,
            "description": "number of transformer blocks."
        },
        "DEPTH_SINGLE_BLOCKS": {
            "value": 38,
            "description": "number of transformer blocks in the single stream block."
        },
        "USE_GRAD_CHECKPOINT": {
            "value": False,
            "description": "whether to use gradient checkpointing."
        },
        "ATTN_BACKEND": {
            "value": "pytorch",
            "description": "backend for the transformer blocks, 'pytorch' or 'flash_attn'."
        }
    }
    def __init__(
            self,
            cfg,
            logger = None
    ):
        super().__init__(cfg, logger=logger)
        self.in_channels = cfg.IN_CHANNELS
        self.out_channels = cfg.get("OUT_CHANNELS", self.in_channels)
        hidden_size = cfg.get("HIDDEN_SIZE", 1024)
        num_heads = cfg.get("NUM_HEADS", 16)
        axes_dim = cfg.AXES_DIM
        theta = cfg.THETA
        vec_in_dim = cfg.VEC_IN_DIM
        self.guidance_embed = cfg.GUIDANCE_EMBED
        context_in_dim = cfg.CONTEXT_IN_DIM
        mlp_ratio = cfg.MLP_RATIO
        qkv_bias = cfg.QKV_BIAS
        depth = cfg.DEPTH
        depth_single_blocks = cfg.DEPTH_SINGLE_BLOCKS
        self.use_grad_checkpoint = cfg.get("USE_GRAD_CHECKPOINT", False)
        self.attn_backend = cfg.get("ATTN_BACKEND", "pytorch")
        self.lora_model = cfg.get("DIFFUSERS_LORA_MODEL", None)
        self.swift_lora_model = cfg.get("SWIFT_LORA_MODEL", None)
        self.pretrain_adapter = cfg.get("PRETRAIN_ADAPTER", None)

        if hidden_size % num_heads != 0:
            raise ValueError(
                f"Hidden size {hidden_size} must be divisible by num_heads {num_heads}"
            )
        pe_dim = hidden_size // num_heads
        if sum(axes_dim) != pe_dim:
            raise ValueError(f"Got {axes_dim} but expected positional dim {pe_dim}")
        self.hidden_size = hidden_size
        self.num_heads = num_heads
        self.pe_embedder = EmbedND(dim=pe_dim, theta=theta, axes_dim= axes_dim)
        self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
        self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
        self.vector_in = MLPEmbedder(vec_in_dim, self.hidden_size)
        self.guidance_in = (
            MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if self.guidance_embed else nn.Identity()
        )
        self.txt_in = nn.Linear(context_in_dim, self.hidden_size)

        self.double_blocks = nn.ModuleList(
            [
                DoubleStreamBlock(
                    self.hidden_size,
                    self.num_heads,
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    backend=self.attn_backend
                )
                for _ in range(depth)
            ]
        )

        self.single_blocks = nn.ModuleList(
            [
                SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=mlp_ratio, backend=self.attn_backend)
                for _ in range(depth_single_blocks)
            ]
        )

        self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)

    def prepare_input(self, x, context, y, x_shape=None):
        # x.shape [6, 16, 16, 16] target is [6, 16, 768, 1360]
        bs, c, h, w = x.shape
        x = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
        x_id = torch.zeros(h // 2, w // 2, 3)
        x_id[..., 1] = x_id[..., 1] + torch.arange(h // 2)[:, None]
        x_id[..., 2] = x_id[..., 2] + torch.arange(w // 2)[None, :]
        x_ids = repeat(x_id, "h w c -> b (h w) c", b=bs)
        txt_ids = torch.zeros(bs, context.shape[1], 3)
        return x, x_ids.to(x), context.to(x), txt_ids.to(x), y.to(x), h, w

    def unpack(self, x: Tensor, height: int, width: int) -> Tensor:
        return rearrange(
            x,
            "b (h w) (c ph pw) -> b c (h ph) (w pw)",
            h=math.ceil(height/2),
            w=math.ceil(width/2),
            ph=2,
            pw=2,
        )

    def merge_diffuser_lora(self, ori_sd, lora_sd, scale = 1.0):
        key_map = {
            "single_blocks.{}.linear1.weight": {"key_list": [
                ["transformer.single_transformer_blocks.{}.attn.to_q.lora_A.weight",
                 "transformer.single_transformer_blocks.{}.attn.to_q.lora_B.weight"],
                ["transformer.single_transformer_blocks.{}.attn.to_k.lora_A.weight",
                 "transformer.single_transformer_blocks.{}.attn.to_k.lora_B.weight"],
                ["transformer.single_transformer_blocks.{}.attn.to_v.lora_A.weight",
                 "transformer.single_transformer_blocks.{}.attn.to_v.lora_B.weight"],
                ["transformer.single_transformer_blocks.{}.proj_mlp.lora_A.weight",
                 "transformer.single_transformer_blocks.{}.proj_mlp.lora_B.weight"]
            ], "num": 38},
            "single_blocks.{}.modulation.lin.weight": {"key_list": [
                ["transformer.single_transformer_blocks.{}.norm.linear.lora_A.weight",
                 "transformer.single_transformer_blocks.{}.norm.linear.lora_B.weight"],
            ], "num": 38},
            "single_blocks.{}.linear2.weight": {"key_list": [
                ["transformer.single_transformer_blocks.{}.proj_out.lora_A.weight",
                 "transformer.single_transformer_blocks.{}.proj_out.lora_B.weight"],
            ], "num": 38},
            "double_blocks.{}.txt_attn.qkv.weight": {"key_list": [
                ["transformer.transformer_blocks.{}.attn.add_q_proj.lora_A.weight",
                 "transformer.transformer_blocks.{}.attn.add_q_proj.lora_B.weight"],
                ["transformer.transformer_blocks.{}.attn.add_k_proj.lora_A.weight",
                 "transformer.transformer_blocks.{}.attn.add_k_proj.lora_B.weight"],
                ["transformer.transformer_blocks.{}.attn.add_v_proj.lora_A.weight",
                 "transformer.transformer_blocks.{}.attn.add_v_proj.lora_B.weight"],
            ], "num": 19},
            "double_blocks.{}.img_attn.qkv.weight": {"key_list": [
                ["transformer.transformer_blocks.{}.attn.to_q.lora_A.weight",
                 "transformer.transformer_blocks.{}.attn.to_q.lora_B.weight"],
                ["transformer.transformer_blocks.{}.attn.to_k.lora_A.weight",
                 "transformer.transformer_blocks.{}.attn.to_k.lora_B.weight"],
                ["transformer.transformer_blocks.{}.attn.to_v.lora_A.weight",
                 "transformer.transformer_blocks.{}.attn.to_v.lora_B.weight"],
            ], "num": 19},
            "double_blocks.{}.img_attn.proj.weight": {"key_list": [
                ["transformer.transformer_blocks.{}.attn.to_out.0.lora_A.weight",
                 "transformer.transformer_blocks.{}.attn.to_out.0.lora_B.weight"]
            ], "num": 19},
            "double_blocks.{}.txt_attn.proj.weight": {"key_list": [
                ["transformer.transformer_blocks.{}.attn.to_add_out.lora_A.weight",
                 "transformer.transformer_blocks.{}.attn.to_add_out.lora_B.weight"]
            ], "num": 19},
            "double_blocks.{}.img_mlp.0.weight": {"key_list": [
                ["transformer.transformer_blocks.{}.ff.net.0.proj.lora_A.weight",
                 "transformer.transformer_blocks.{}.ff.net.0.proj.lora_B.weight"]
            ], "num": 19},
            "double_blocks.{}.img_mlp.2.weight": {"key_list": [
                ["transformer.transformer_blocks.{}.ff.net.2.lora_A.weight",
                 "transformer.transformer_blocks.{}.ff.net.2.lora_B.weight"]
            ], "num": 19},
            "double_blocks.{}.txt_mlp.0.weight": {"key_list": [
                ["transformer.transformer_blocks.{}.ff_context.net.0.proj.lora_A.weight",
                 "transformer.transformer_blocks.{}.ff_context.net.0.proj.lora_B.weight"]
            ], "num": 19},
            "double_blocks.{}.txt_mlp.2.weight": {"key_list": [
                ["transformer.transformer_blocks.{}.ff_context.net.2.lora_A.weight",
                 "transformer.transformer_blocks.{}.ff_context.net.2.lora_B.weight"]
            ], "num": 19},
            "double_blocks.{}.img_mod.lin.weight": {"key_list": [
                ["transformer.transformer_blocks.{}.norm1.linear.lora_A.weight",
                 "transformer.transformer_blocks.{}.norm1.linear.lora_B.weight"]
            ], "num": 19},
            "double_blocks.{}.txt_mod.lin.weight": {"key_list": [
                ["transformer.transformer_blocks.{}.norm1_context.linear.lora_A.weight",
                 "transformer.transformer_blocks.{}.norm1_context.linear.lora_B.weight"]
            ], "num": 19}
        }
        for k, v in key_map.items():
            key_list = v["key_list"]
            block_num = v["num"]
            for block_id in range(block_num):
                current_weight_list = []
                for k_list in key_list:
                    current_weight = torch.matmul(lora_sd[k_list[0].format(block_id)].permute(1, 0),
                                                  lora_sd[k_list[1].format(block_id)].permute(1, 0)).permute(1, 0)
                    current_weight_list.append(current_weight)
                current_weight = torch.cat(current_weight_list, dim=0)
                ori_sd[k.format(block_id)] += scale*current_weight
        return ori_sd

    def merge_swift_lora(self, ori_sd, lora_sd, scale = 1.0):
        have_lora_keys = {}
        for k, v in lora_sd.items():
            k = k[len("model."):] if k.startswith("model.") else k
            ori_key = k.split("lora")[0] + "weight"
            if ori_key not in ori_sd:
                raise f"{ori_key} should in the original statedict"
            if ori_key not in have_lora_keys:
                have_lora_keys[ori_key] = {}
            if "lora_A" in k:
                have_lora_keys[ori_key]["lora_A"] = v
            elif "lora_B" in k:
                have_lora_keys[ori_key]["lora_B"] = v
            else:
                raise NotImplementedError
        for key, v in have_lora_keys.items():
            current_weight = torch.matmul(v["lora_A"].permute(1, 0), v["lora_B"].permute(1, 0)).permute(1, 0)
            ori_sd[key] += scale * current_weight
        return ori_sd


    def load_pretrained_model(self, pretrained_model):
        if next(self.parameters()).device.type == 'meta':
            map_location = we.device_id
        else:
            map_location = "cpu"
        if self.lora_model is not None:
            map_location = we.device_id
        if pretrained_model is not None:
            with FS.get_from(pretrained_model, wait_finish=True) as local_model:
                if local_model.endswith('safetensors'):
                    from safetensors.torch import load_file as load_safetensors
                    sd = load_safetensors(local_model, device=map_location)
                else:
                    sd = torch.load(local_model, map_location=map_location)
            if "state_dict" in sd:
                sd = sd["state_dict"]
            if "model" in sd:
                sd = sd["model"]["model"]

            if self.lora_model is not None:
                with FS.get_from(self.lora_model, wait_finish=True) as local_model:
                    if local_model.endswith('safetensors'):
                        from safetensors.torch import load_file as load_safetensors
                        lora_sd = load_safetensors(local_model, device=map_location)
                    else:
                        lora_sd = torch.load(local_model, map_location=map_location)
                sd = self.merge_diffuser_lora(sd, lora_sd)
            if self.swift_lora_model is not None:
                with FS.get_from(self.swift_lora_model, wait_finish=True) as local_model:
                    if local_model.endswith('safetensors'):
                        from safetensors.torch import load_file as load_safetensors
                        lora_sd = load_safetensors(local_model, device=map_location)
                    else:
                        lora_sd = torch.load(local_model, map_location=map_location)
                sd = self.merge_swift_lora(sd, lora_sd)

            adapter_ckpt = {}
            if self.pretrain_adapter is not None:
                with FS.get_from(self.pretrain_adapter, wait_finish=True) as local_adapter:
                    if local_model.endswith('safetensors'):
                        from safetensors.torch import load_file as load_safetensors
                        adapter_ckpt = load_safetensors(local_adapter, device=map_location)
                    else:
                        adapter_ckpt = torch.load(local_adapter, map_location=map_location)
            sd.update(adapter_ckpt)


            new_ckpt = OrderedDict()
            for k, v in sd.items():
                if k in ("img_in.weight"):
                    model_p = self.state_dict()[k]
                    if v.shape != model_p.shape:
                        model_p.zero_()
                        model_p[:, :64].copy_(v[:, :64])
                        new_ckpt[k] = torch.nn.parameter.Parameter(model_p)
                    else:
                        new_ckpt[k] = v
                else:
                    new_ckpt[k] = v


            missing, unexpected = self.load_state_dict(new_ckpt, strict=False, assign=True)
            self.logger.info(
                f'Restored from {pretrained_model} with {len(missing)} missing and {len(unexpected)} unexpected keys'
            )
            if len(missing) > 0:
                self.logger.info(f'Missing Keys:\n {missing}')
            if len(unexpected) > 0:
                self.logger.info(f'\nUnexpected Keys:\n {unexpected}')

    def forward(
        self,
        x: Tensor,
        t: Tensor,
        cond: dict = {},
        guidance: Tensor | None = None,
        gc_seg: int = 0
    ) -> Tensor:
        x, x_ids, txt, txt_ids, y, h, w = self.prepare_input(x, cond["context"], cond["y"])
        # running on sequences img
        x = self.img_in(x)
        vec = self.time_in(timestep_embedding(t, 256))
        if self.guidance_embed:
            if guidance is None:
                raise ValueError("Didn't get guidance strength for guidance distilled model.")
            vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
        vec = vec + self.vector_in(y)
        txt = self.txt_in(txt)
        ids = torch.cat((txt_ids, x_ids), dim=1)
        pe = self.pe_embedder(ids)
        kwargs = dict(
            vec=vec,
            pe=pe,
            txt_length=txt.shape[1],
        )
        x = torch.cat((txt, x), 1)
        if self.use_grad_checkpoint and gc_seg >= 0:
            x = checkpoint_sequential(
                functions=[partial(block, **kwargs) for block in self.double_blocks],
                segments=gc_seg if gc_seg > 0 else len(self.double_blocks),
                input=x,
                use_reentrant=False
            )
        else:
            for block in self.double_blocks:
                x = block(x, **kwargs)

        kwargs = dict(
            vec=vec,
            pe=pe,
        )

        if self.use_grad_checkpoint and gc_seg >= 0:
            x = checkpoint_sequential(
                functions=[partial(block, **kwargs) for block in self.single_blocks],
                segments=gc_seg if gc_seg > 0 else len(self.single_blocks),
                input=x,
                use_reentrant=False
            )
        else:
            for block in self.single_blocks:
                x = block(x, **kwargs)
        x = x[:, txt.shape[1] :, ...]
        x = self.final_layer(x, vec)  # (N, T, patch_size ** 2 * out_channels) 6 64 64
        x = self.unpack(x, h, w)
        return x

    @staticmethod
    def get_config_template():
        return dict_to_yaml('MODEL',
                            __class__.__name__,
                            Flux.para_dict,
                            set_name=True)